du
play

du Langevin Langevin + = u n ( t ) Equation Equation dt - PowerPoint PPT Presentation

! Introduction to Aerosols ! Introduction to Aerosols ! Drag Forces ! Drag Forces ! Cunningham Corrections ! Cunningham Corrections ! Lift Forces ! Lift Forces ! Brownian Motion ! Brownian Motion ! Particle Deposition Mechanisms ! !


  1. ! Introduction to Aerosols ! Introduction to Aerosols ! Drag Forces ! Drag Forces ! Cunningham Corrections ! Cunningham Corrections ! Lift Forces ! Lift Forces ! Brownian Motion ! Brownian Motion ! Particle Deposition Mechanisms ! ! Gravitational Sedimentation ! ! Aerosol Coagulation ! ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi du Langevin Langevin + β = u n ( t ) Equation Equation dt β = πµ = τ 3 d / C m 1 / c N(t) = White Noise N(t) = White Noise β 2 kT = S nn Spectral Intensity Spectral Intensity π m A Particle under Random Molecular Impact A Particle under Random Molecular Impact ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 1

  2. ω = ω ω 2 S ( ) | H ( ) | S ( ) τ = + τ ) Autocorrelation Autocorrelation R ( ) u ( t u ( t ) uu nn Function Function 1 System System ω = H ( ) ω + β Function Function +∞ i 1 ∫ τ = ωτ ω ω i R ( ) e S ( ) d uu uu 2 β π Response Power Response Power 2 kT / m − ∞ Fourier Fourier ω = S ( ) Spectrum Spectrum uu ω + β 2 2 Transform Transform +∞ 1 ∫ ω = − ωτ τ τ i S ( ) e R ( ) d π uu uu kT Autocorrelation Autocorrelation τ = − β τ | | R ( ) e − ∞ uu m ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi Mass t Mass 1 d ∫ = − τ τ τ 2 = Variance Variance x ( t ) 2 ( t ) R ( ) d 2 D x ( t ) Diffusivity Diffusivity uu 2 dt 0 ∞ ∫ = τ τ t D R ( ) d ∫ uu = x ( t ) u ( t 1 dt ) Position Position 0 1 Diffusivity Diffusivity 0 kTC kT = = c t t D ∫∫ Variance Variance = τ − τ τ τ 2 β πµ x ( t ) R ( ) d d m 3 d uu 1 2 1 2 0 0 ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 2

  3. Fokker- -Planck Equation Planck Equation F ( x ) Fokker Langevin Langevin + β − = & & & x x n ( t ) Equation Equation m ∂ ∂ β ∂ 2 f kT f − β = ( uf ) ∂ V ( x ) ∂ ∂ ∂ = − 2 t u m F ( x ) u ∂ x Fokker- Fokker -Planck Equation Planck Equation mu 2 1 − = Probability Probability ∂ ∂ ∂ β ∂ f e 2 kT & 2 f ( x f ) 1 kT f = − + β − + π & [( x F ( x )) f ] Density Density 2 kT / m ∂ ∂ ∂ ∂ & & 2 t x x m m x ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi = n ( t ) 0 x & 2 White Noise m x F ( x ) dx ∫ = − − 1 f C exp{ [ ]} 0 kT 2 m = π δ − 0 n ( t ) n ( t ) 2 S ( t t ) Probability Probability 1 2 nn 1 2 Density Density 2 & 1 m x ! Choose a time step ( ∆ t<< τ ) = − + f C exp{ [ V ( x )]} 0 kT 2 ! Generate a sequence of uniform random numbers (0 <U<1) 2 − & Gravitational Gravitational m x mg ( x x ) − − 0 = ! Transform to Gaussian random f C e 2 kT e kT Field Field 0 numbers. ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 3

  4. = − π ! G 2 ln U cos 2 U 1 1 2 n i = − π G 2 ln U sin 2 U 2 1 2 ! ! Amplitude of the Brownian force t ∆ t π is given by S U ∆ t = nn n ( t ) G ∆ i i t ! The generated sample of Brownian U ∆ t force need to be shifted by ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi Brownian Force Brownian Force n i t ∆ t U ∆ t ME 437/537 G. Ahmadi ME 437/537 Ounis, Ahmadi and McLaughlin (1991) G. Ahmadi 4

  5. = x 2 ( t ) 2 Dt Simulations Mean + σ Mean - σ ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi Mean + σ Mean + σ Mean - σ Mean - σ ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 5

  6. z t = o Equation of Motion N N erfc ( ) Equation of Motion Equation of Motion o 4 Dt Simulations p d 1 u = − + + f p ( ) ( t ) u u g n τ dt σ = 2 Variance ( t ) 2 Dt Variance Variance y ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend