interactions in matter
play

INTERACTIONS IN MATTER Alexander A. Iskandar Physics of Magnetism - PDF document

08/01/2018 FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER Alexander A. Iskandar Physics of Magnetism and Photonics Surface Plasmon Propagation of Surface SURFACE PLASMON Plasmon Localized Plasmon SPR Spectroscopy Alexander


  1. 08/01/2018 FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER Alexander A. Iskandar Physics of Magnetism and Photonics • Surface Plasmon • Propagation of Surface SURFACE PLASMON Plasmon • Localized Plasmon • SPR Spectroscopy Alexander A. Iskandar Electromagnetic Interactions in Matter 2 1

  2. 08/01/2018 REFERENCES  Main ▪ S.A. Maier : Section 2.1 – 2.3, 5.1  Supplementary ▪ J. A. Dionne et.al., Phys. Rev. B72, 075405 (2005) Alexander A. Iskandar Electromagnetic Interactions in Matter 3 WAVE EQUATION AT METAL/INSULATOR INTERFACES  Consider the x z y direction as the dielectric effective propagation direction and by x metal symmetry, there is no y -dependence.  E    ( ) i x t ( , , , ) ( ) E x y z t z e  Substituting to the Maxwell’s eq.s, we obtain    2 ( z ) E      2 2 0 k E  0 2 z And similar equation for the H -field. Alexander A. Iskandar Electromagnetic Interactions in Matter 4 2

  3. 08/01/2018 WAVE EQUATION AT METAL/INSULATOR INTERFACES  Consider the two special polarization ▪ TE : with only H x , H z and E y are nonzero ▪ TM : with only E x , E z and H y are nonzero  For the TE mode, we need to solve only for the E y field component from the wave equation,  2   E      y 2 2 0 k E  0 y 2 z  And, the H x , H z field components can be obtained from the Maxwell’s eq.   E 1   y H i , H E    x z y z 0 0 Alexander A. Iskandar Electromagnetic Interactions in Matter 5 WAVE EQUATION AT METAL/INSULATOR INTERFACES  Similarly, for the TM mode, we need to solve only for the H y field component from the wave equation,  2   H      y 2 2 0 k H  0 y 2 z  And, the E x , E z field components can be obtained from the Maxwell’s eq.   1 H     y , E i E H    x z y z 0 0 Alexander A. Iskandar Electromagnetic Interactions in Matter 6 3

  4. 08/01/2018 TE SURFACE-WAVE SOLUTION  Consider the TE mode, solution for region of z > 0 is     i ( x k z ) E ( z ) A e , Re[ k ] 0 d 2 y d  k        ( ) ( ) i x k z i x i x k z ( ) d , ( ) H z A e H z A e e d d   x 2 z 2 0 0  And for region z < 0 , we obtain     ( ) i x k z ( ) , Re[ ] 0 E z A e k m y 1 m  k        i ( x k z ) i ( x k z ) m H ( z ) A e , H ( z ) A e m m 1  1  x z 0 0 Alexander A. Iskandar Electromagnetic Interactions in Matter 7 TE SURFACE-WAVE SOLUTION  Applying continuity condition to the E y and H x field components, we arrive at the condition      0 A A and A k k 1 2 1 m d  Since confinement condition requires that Re[ k m ] > 0 and Re[ k d ] > 0 , the above condition can only be satisfied with A 1 = 0 , which yield a trivial solution. Alexander A. Iskandar Electromagnetic Interactions in Matter 8 4

  5. 08/01/2018 TM SURFACE-WAVE SOLUTION  On the other hand, for the TM mode, solution for region of z > 0 is     ( ) i x k z ( ) , Re[ ] 0 H z A e k d y 2 d  k         i ( x k z ) i ( x k z ) ( ) d , ( ) E z A e E z A e d d 2   2   x z d 0 d 0  And for region z < 0 , we obtain     ( ) i x k z ( ) , Re[ ] 0 H z A e k m y 1 m  k        ( ) ( ) i x k z i x k z ( ) m , ( ) E z A e E z A e m m     x 1 z 1 0 0 m m Alexander A. Iskandar Electromagnetic Interactions in Matter 9 TM SURFACE-WAVE SOLUTION  Applying continuity condition to the H y and E x field components, we arrive at the conditions  k    d d A A and  1 2 k m m  Hence confinement condition requires that Re[ k m ] > 0 and Re[ k d ] > 0 , and this can be fulfilled by       Re 0 0 if m d  Further, the wave number in each region is given by         2 2 2 2 2 2 k k and k k 0 0 m m d d Alexander A. Iskandar Electromagnetic Interactions in Matter 10 5

  6. 08/01/2018 SURFACE PLASMON WAVE  Combining with the previous condition we have the following dispersion relation for the propagation wavenumber     m d k 0    m d  This surface wave is called Surface Plasmon Wave, that exist only for TM polarization. Alexander A. Iskandar Electromagnetic Interactions in Matter 11 SURFACE PLASMON WAVE  Plasmons: ▪ collective oscillations of the “free electron gas” density, often at optical frequencies.  Surface Plasmons: ▪ plasmons confined to surface (interface) and interact with light resulting in polaritons. ▪ propagating electron density waves occurring at the interface between metal and dielectric.  Surface Plasmon Resonance: ▪ light (  ) in resonance with surface plasmon oscillation Alexander A. Iskandar Electromagnetic Interactions in Matter 13 6

  7. 08/01/2018 SURFACE PLASMON DISPERSION RELATION  ck x Radiative modes real    2  ′ m > 0)    real k z ( k m ) d p 1 m  2  p 1 / 2 Quasi-bound modes      imaginary      m d    d <  ′ m < 0)    real k z   c  m d   p sp   1 d     2 2 2 k k 0 m m Dielectric:  d real  z Bound modes imaginary k z x (  ′ m <  d ) Metal:  m =  ′ m + i  ″ m  ″ m << 1 Re  (or k x ) Alexander A. Iskandar Electromagnetic Interactions in Matter 14 SURFACE PLASMON DISPERSION RELATION     2 2 2 k k m 0 m  Radiative solution ( k x and k m real) lies the left of the light-line. This happens for  >  p .  Bound solution ( k x real and k m imaginary) lies to the right of the light-line.  Between the regime of the bound and radiative modes, a frequency gap region with purely imaginary  prohibiting propagation exists. Alexander A. Iskandar Electromagnetic Interactions in Matter 15 7

  8. 08/01/2018 EXAMPLE OF Ag-SiO 2 INTERFACE Kurva Dispersi - Model Gas Elektron Bebas Kurva Dispersi - Komponen Re[kx] dengan Data Empiris 6 6 5.82 eV kx' / 213 nm     8 . 85 10 15 1 light line 5.5 s 5.5 P 5 5 4.5 4.5 Modus Radiatif 3.73 eV / (RPP) 332 nm 4 4 Energi (eV) Energi (eV)    1   Modus Quasi-bound (QB) 3.5 SP P 2 3.5 3.28 eV / 378 nm 3 3 Modus Terikat 3.44 eV / (SPP) 360 nm 2.5 2.5 2 2 Re[kx] 1.5 1.5 Im[kx] 1 1 light line 0 0.05 0.1 0.15 0.2 0.25 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 kx (1/nm) kx' (1/nm) Alexander A. Iskandar Electromagnetic Interactions in Matter 16 PROPAGATION LENGTH AND SKIN DEPTH  For real metals,  ″ m is not negligible, hence  (= k x ) Kurva Propagasi untuk Tiga Konstanta Dielektrik yang Berbeda will be a complex quantity. -2 10 -3  The propagation of surface 10 plasmon wave will be -4 10 Panjang Propagasi (m) attenuated. Define -5 10 propagation length L as -6 RPP 10 the distance when the -7 10 intensity has become 1/ e -8 SiO2 10 of the initial intensity. Udara SPP Si -9 10 1 200 400 600 800 1000 1200 1400 1600 1800 2000  Lambda Vakum (nm) L  2 Im[ ] Alexander A. Iskandar Electromagnetic Interactions in Matter 17 8

  9. 08/01/2018 PROPAGATION LENGTH AND SKIN DEPTH Skin Depth SiO2 Vs. Lambda  Confinement of the 2500 SiO 2 surface plasmon 2000 wave near the Skin Depth 1500 interface can be (nm) 1000 360 nm (3.44 eV) characterize by its 500 skin depth, defined 0 200 400 600 800 1000 1200 1400 1600 1800 2000 as the length d Panjang Gelombang Vakum (nm) Skin Depth Ag when the intensity 0 has become 1/ e of -50 the initial intensity. 360 nm (3.44 eV) -100 Skin Depth 1 (nm) d  -150   Ag Im k -200 i Alexander A. Iskandar Electromagnetic Interactions in Matter 18 -250 200 400 600 800 1000 1200 1400 1600 1800 2000 Panjang Gelombang Vakum (nm) E x DISTRIBUTION AND ENERGY DENSITY Distribusi Medan Ex, untuk Lambda = 476 nm 1 0.5 Illumination with  = 476 nm (2.61 eV) Ex(N/C) 0 – SPP mode -0.5 Ag -1 SiO2 200 100 200 150 0 100 -100 50 -200 0 z(nm) x(nm) Distribusi Medan Ex, untuk Lambda = 476 nm Distribusi Rapat Energi pada x = 0 200 5 SiO2 Ag Ag 4.5 150 4 100 3.5 50 3 z(nm) 0 U 2.5 -50 2 1.5 -100 1 -150 0.5 SiO2 -200 0 0 20 40 60 80 100 120 140 160 180 200 -200 -150 -100 -50 0 50 100 150 200 x(nm) z(nm) Alexander A. Iskandar Electromagnetic Interactions in Matter 19 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend