light matter interactions ii light matter interactions ii
play

Light Matter Interactions (II) Light Matter Interactions (II) - PowerPoint PPT Presentation

Light Matter Interactions (II) Light Matter Interactions (II) Peter Oppeneer Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden 1 Outline Lecture II Light-magnetism interaction Phenomenology of


  1. Light – Matter Interactions (II) Light – Matter Interactions (II) Peter Oppeneer Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden 1

  2. Outline – Lecture II – Light-magnetism interaction  Phenomenology of magnetic spectroscopies  Electronic structure theory, linear-response theory  Theory/understanding of magnetic spectroscopies • Optical regime • Ultraviolet and soft X-ray regime 2

  3. In the beginning … First observation of magneto-optics Magneto-optical Faraday effect (1845)  Observation of interaction light-magnetism enormous impact on development of science! Faraday effect E q F (- M ) = - q F ( M ) Michael Faraday q F ( M ) ~ lin. M (1791 – 1868) 3

  4. Magneto-optical Kerr effect Kerr (1876) Kerr (1878) Zeeman (1896) pol. analysis pol. analysis intensity measurement  r r b      tan K  a r r   Rotation of the polarization plane & ellipticity: Completely a magnetic effect! One of the best tools in magnetism research! 4

  5. Magneto-optical Voigt effect Voigt effect (1899) ^ q V 45 o Woldemar Voigt (1850 – 1919) Very different from Faraday effect; Voigt effect is “ quadratic ” (even) in M Voigt effect Kerr effect Imaging of magnetic domains using Voigt and Kerr effect in reflection (Courtesy R. Schäfer) 5

  6. Magnetic circular and linear dichroism M E || E  E ^ MCD  ( I   I  )/( I   I  ) MLD  ( I ||  I ^ )/( I ||  I ^ ) Magnetic Circular Dichroism Magnetic Linear Dichroism ”odd in M” ”even in M” 6

  7. Development of light-magnetic material interaction Inv. Faraday effect Electron MCD Ultrafast magn.switching Non-linear magneto-optics Spin Hall effect XMLD XMCD, XRMS Vector magnetometry Domain imaging MO Kerr loops Magn. circ. dichroism Zeeman effect Voigt effect Kerr effect Faraday effect (1845) 7

  8. Recent Examples of Light – Magnetism Interactions Observation of the spin Hall effect Kato, Myers, Gossard & Awschalom, Science 306 , 1910 (2004) Spin Hall effect Kerr rotation image Dyakonov & Perel, JETP Lett. Reflection 13 , 467 (1971) image Material: non-magnetic n-GaAs [110] MO Kerr rotation detection ~ 10 -5 deg. 8

  9. Spin Hall effect in heavy metals Gives rise to spin-orbit torque Direct observation of SHE in pure heavy-metal difficult because of short spin lifetime and spin diffusion length Miron et al, Nature 476 , 189 (2011) Liu et al, Science 336 , 555 (2012) J c MOKE detection could be possible due to penetration depth 9

  10. Experimental direct observation of spin Hall effect Pt j =10 7 A/cm 2 SH (exp)  1880 [ W cm ]  1 s xz SH ( th )  1890 [ W cm ]  1 s xz Excellent agreement with experiment Stamm, Murer, Berritta, Feng, Gabureac, Oppeneer Estimated l s =11.4 ± 2 nm for pure Pt & Gambardella, PRL 119 , 087203 (2017)  Accurate MOKE measurements of SH conductivity in heavy metals feasible with nrad sensitivity 10

  11. Optically induced magnetization Due to nonlinear “opto-magnetic” effect, the inverse Faraday effect: Induces magnetization  M Could potentially lead to a fast, optically driven magnetization reversal Kimel et al, Nature 435 , 655 (2005) 11

  12. All-optical writing of magnetic domains GdFeCo FePt Stanciu et al, PRL 99 , 047601 (2007 ) Lambert et al, Science 345 , 1337 (2014)  Due to inverse Faraday effect?  Background all-optical magn. recording  Erasing & writing with fs-laser pulses  Approx. 10 3 times faster recording? (symposium Th. Rasing, A. Kirilyuk) 12

  13. Ultrafast magnetism Measurement of ultrafast magnetic response with time-resolved magneto-optics x t t M ( ), n ( ) z y Ni q t  t ( , M ) , R ( ) fs laser pulse K t s E e p fs laser pulse (pump) Hofherr et al, PRB 96 , Beaurepaire, Merle, Danois, 100403R (2017) Bigot, PRL 76 , 4250 (1996)  Magnetization decay  Very fast decay in <250 fs ~40 fs 13

  14. Theoretical description of light – magnetism interaction Use 2 nd level: Combination of Maxwell-Fresnel theory and ab initio quantum theory Fresnel equation for modes in material: Geometry & materials ´ boundary     r   i r r E E      ss sp  s   s conditions:       r i r r E E       ps pp p p q  q r E n cos n cos    s r i i t t E s ss q  q i E n cos n cos s i i t t q q a t E 2 n cos   s t i i E p ss b q  q i E n cos n cos s i i t t Polarization analysis or intensity measurement And: ab initio theory for calculation of  ( w ) 14

  15. Dependence of the dielectric tensor on fields         w ( k , , B , E ) The dielectric tensor depends on external fields    ( 1 ) Use a Taylor expansion for effects to lowest order:     w  ( k , B , E , )         O ( k ) O ( B ) O ( E ) O ( B E ) O ( B B ) O ( E E )  0 i j i j i j All the (linear) phenomena can be described, using the Fresnel formalism 15

  16. Magnetic effects in Fresnel equations Typical  tensor: Onsager relations  Magnetic parity     0   w    w ( H , ) ( H , )  odd   ^ xy  xy xy       0 ^ yx   w    w ( H , ) ( H , )    even    0 0   || Magn. effects probe always ~ M or ~ M 2 (to lowest order) Examples:    w d    2 w d  xy Re MCD Odd in M; MLD      xy even   Im   ^ 2 c n ||    2 cn     ^    0   2 M     16

  17. Magneto-optical Kerr and Faraday effects polar Kerr effect, normal incidence Faraday effect, normal incidence     2 n i Assume    s  s Use or  xx xy xy xx xy xx s w  s w  ( ) ( ) 2 d q    xy q    xy i i F F K K   s w s   s w 1 / 2 1 / 2 c ( 1 4 i / ) ( 1 4 i / ) xx xx xx 17

  18. Classification of magnetic spectroscopies Linear (odd) in M spectroscopies: Classification criteria: Polarization Intensity analysis 1. Magnetic parity 2. Transmission or Transmission Faraday MCD L C reflection 3. Polarization or C P-MOKE T-MOKE Reflection intensity L-MOKE L L RMS 4. Linearly or circ. polarized light 2 quantities 1 quant. Suitable for (element-selective) study of ferro-, ferrimagnets 18

  19. Even-in- M magnetic spectroscopies Quadratic (even) in M spectroscopies: Polarization Intensity analysis Transmission Voigt MLD L L birefringence Reflection R-MLD L L R-Voigt 2 quantities 1 quant. Suitable for (element-selective) study of antiferromagnets (and ferromagnets as well) 19

  20. Linear-response theory Lifetime broadening, 1/ t ~ 0.4 eV  2 2 4 e   w     w  w x x Im[ ( )] Re{ } ( ) xx n ' n nn ' nn ' w 2 2 m V  n n ' un . occ .  2 2 4 e   w     w  w x y Re[ ( )] Im{ } ( ) xy n ' n nn ' nn ' w 2 2 m V  n n ' (for 1/ t -> 0) un . occ . Lifetime broadening happens and needs to be taken into account 20

  21. Lifetime broadening – linear magneto-optics calc. Optical frequencies: lifetime G1/t ≈ 0.03 Ry Oppeneer, Handbook of Magnetic Materials, Vol. 13 (2001) 21

  22. Origin of magneto-optical effects Effective Kohn-Sham Hamiltonian: Exchange field      2     ˆ  ˆ ˆ ˆ       s    s H V ( r ) V ( r ) 1 B ( r )    e , N 0 xc 2 m   Spin-orbit coupling Spin-density (2x2):           n ( r ) n ( r ) n ( r )    s n ( r ) { n ( r ) 1 m ( r ) } / 2        0    m ( r ) n ( r ) n ( r ) B   Vary the two magnetic interactions (exchange & spin-orbit) to deduce how magnetic spectra depend on these. 22

  23. Effect of SOI and exchange interaction    2 e  1 dV      s    Full form of SOI:   H SO L ( L S ) 2 2 4 m c  r dr  Ni (small relativistic effect) Exchange splitting, 1 – 2 eV (3d atom) Spin-orbit splitting ~20 meV    ex SOC 1 eV Spin-orbit coupling breaks crystal symmetry 23

  24. Leading order quantity: spin-orbit coupling Leading quantity determining the valence band MO effect is spin-orbit coupling   L.S)  Kerr and Faraday effect scale linear in the SOC, not in the exc.-splitting! Scaling of SOI Scaling of exc.int. Ni 24

  25. What about the X-ray regime ? w   w    i / c ( n z ) i t X-ray magnetic circular dichroism E ( z , t ) ( e i e ) e   x y Co XMCD Understand origin of and perform ab initio calculations for XMCD & XMLD at L-edges 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend