kbo orientability
play

KBO Orientability Harald Zankl Nao Hirokawa Aart Middeldorp - PowerPoint PPT Presentation

KBO Orientability Harald Zankl Nao Hirokawa Aart Middeldorp Japan Advanced Institute of Science and Technology University of Innsbruck KBO Orientability 1/32 Reference Harald Zankl, Nao Hirokawa, and Aart Middeldorp JAR


  1. Theorem Knuth and Bendix, 1970 TRS is terminating if it is KBO N terminating Theorem Dershowitz, 1979 TRS is terminating if it is KBO R � 0 terminating Dick, Kalmus, and Martin, 1990 Theorem KBO R � 0 termination is decidable within exponential time Theorem Korovin and Voronkov, 2001, 2003 TRS is KBO N terminating ⇐ ⇒ it is KBO R � 0 terminating KBO R � 0 termination is decidable within polynomial time Theorem Zankl and Middeldorp, 2007 KBO { 0 , 1 ,...,B } termination ( B ∈ N ) can reduce to SAT and PBC KBO Orientability 12/32

  2. This Talk MAIN RESULT for every TRS R and N = � l → r ∈R ( | l | + | r | ) + 1 R is KBO N terminating ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating where, B = N 4 N +1 KBO Orientability 13/32

  3. This Talk MAIN RESULT for every TRS R and N = � l → r ∈R ( | l | + | r | ) + 1 R is KBO N terminating ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating where, B = N 4 N +1 OVERVIEW OF PROOF Principal Solutions KBO Orientability 13/32

  4. This Talk MAIN RESULT for every TRS R and N = � l → r ∈R ( | l | + | r | ) + 1 R is KBO N terminating ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating where, B = N 4 N +1 OVERVIEW OF PROOF Principal Solutions MCD KBO Orientability 13/32

  5. This Talk MAIN RESULT for every TRS R and N = � l → r ∈R ( | l | + | r | ) + 1 R is KBO N terminating ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating where, B = N 4 N +1 OVERVIEW OF PROOF Principal Solutions MCD Bound by Norm KBO Orientability 13/32

  6. Principal Solutions KBO Orientability 14/32

  7. Example given precedence, KBO N problem reduces to linear integral constraints Example a ( a ( x )) → b ( b ( b ( x ))) b ( b ( b ( b ( b ( x ))))) → a ( a ( a ( x ))) KBO Orientability 15/32

  8. Example given precedence, KBO N problem reduces to linear integral constraints Example a ( a ( x )) → b ( b ( b ( x ))) b ( b ( b ( b ( b ( x ))))) → a ( a ( a ( x ))) for precedence a > b, solve wrt w ( a ) , w ( b ) ∈ N 2 · w ( a ) − 3 · w ( b ) � 0 − 3 · w ( a ) + 5 · w ( b ) > 0 KBO Orientability 15/32

  9. Example given precedence, KBO N problem reduces to linear integral constraints Example a ( a ( x )) → b ( b ( b ( x ))) b ( b ( b ( b ( b ( x ))))) → a ( a ( a ( x ))) for precedence a > b, solve wrt w ( a ) , w ( b ) ∈ N 2 · w ( a ) − 3 · w ( b ) � 0 − 3 · w ( a ) + 5 · w ( b ) > 0 for precedence > = ∅ solve wrt w ( a ) , w ( b ) ∈ N 2 · w ( a ) − 3 · w ( b ) > 0 − 3 · w ( a ) + 5 · w ( b ) > 0 KBO Orientability 15/32

  10. Principal Solutions Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form a i ∈ Z n , � { � a i · � x i R i 0 } i with R i ∈ { � , > } ,� x ∈ N KBO Orientability 16/32

  11. Principal Solutions Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form a i ∈ Z n , � { � a i · � x i R i 0 } i with R i ∈ { � , > } ,� x ∈ N Definition write A I for ( � a i ) 1 ,...,n KBO Orientability 16/32

  12. Principal Solutions Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form a i ∈ Z n , � { � a i · � x i R i 0 } i with R i ∈ { � , > } ,� x ∈ N Definition write A I for ( � a i ) 1 ,...,n x ∈ N n � x is solution of A I if A I � x � 0 and � KBO Orientability 16/32

  13. Principal Solutions Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form a i ∈ Z n , � { � a i · � x i R i 0 } i with R i ∈ { � , > } ,� x ∈ N Definition write A I for ( � a i ) 1 ,...,n x ∈ N n � x is solution of A I if A I � x � 0 and � solution � x maximizing { i | � a i · � x > 0 } wrt ⊆ is principal KBO Orientability 16/32

  14. Principal Solutions Gale, 1960; Dick, Kalmus and Martin, 1990; Korovin and Voronkov, 2003 set I of KBO inequalities are of form a i ∈ Z n , � { � a i · � x i R i 0 } i with R i ∈ { � , > } ,� x ∈ N Definition write A I for ( � a i ) 1 ,...,n x ∈ N n � x is solution of A I if A I � x � 0 and � solution � x maximizing { i | � a i · � x > 0 } wrt ⊆ is principal Theorem principal solution of A always exists ∀ principal solution � x : ( I is solvable ⇐ ⇒ � x satisfies I ) KBO Orientability 16/32

  15. � � � � 2 · w ( a ) − 3 · w ( b ) 0 2 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > KBO Orientability 17/32

  16. � � � � 2 · w ( a ) − 3 · w ( b ) 0 2 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > since � 3 � � 0 � � 13 � � 2 � A I = A I = 2 1 8 1 � 3 � is not principal solution of A I 2 KBO Orientability 17/32

  17. � � � � 2 · w ( a ) − 3 · w ( b ) 0 2 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > since � 3 � � 0 � � 13 � � 2 � A I = A I = 2 1 8 1 � 3 � is not principal solution of A I 2 � � 13 is principal solution of A I and satisfies I 8 hence I is solvable KBO Orientability 17/32

  18. Example     2 · w ( a ) − 3 · w ( b ) > 0 2 − 3   I = − 3 · w ( a ) + 5 · w ( b ) > 0 A I = − 3 5   − 4 · w ( a ) + 3 · w ( b ) 0 − 4 3 �   KBO Orientability 18/32

  19. Example     2 · w ( a ) − 3 · w ( b ) > 0 2 − 3   I = − 3 · w ( a ) + 5 · w ( b ) > 0 A I = − 3 5   − 4 · w ( a ) + 3 · w ( b ) 0 − 4 3 �   � 0 � principal solution of A I is and does not satisfy I 0 KBO Orientability 18/32

  20. Example     2 · w ( a ) − 3 · w ( b ) > 0 2 − 3   I = − 3 · w ( a ) + 5 · w ( b ) > 0 A I = − 3 5   − 4 · w ( a ) + 3 · w ( b ) 0 − 4 3 �   � 0 � principal solution of A I is and does not satisfy I 0 hence I is not solvable KBO Orientability 18/32

  21. Example     2 · w ( a ) − 3 · w ( b ) > 0 2 − 3   I = − 3 · w ( a ) + 5 · w ( b ) > 0 A I = − 3 5   − 4 · w ( a ) + 3 · w ( b ) 0 − 4 3 �   � 0 � principal solution of A I is and does not satisfy I 0 hence I is not solvable QUESTION how to find principal solution? KBO Orientability 18/32

  22. Example     2 · w ( a ) − 3 · w ( b ) > 0 2 − 3   I = − 3 · w ( a ) + 5 · w ( b ) > 0 A I = − 3 5   − 4 · w ( a ) + 3 · w ( b ) 0 − 4 3 �   � 0 � principal solution of A I is and does not satisfy I 0 hence I is not solvable QUESTION how to find principal solution? MCD ☞ KBO Orientability 18/32

  23. MCD: Method of Complete Description KBO Orientability 19/32

  24. MCD Dick, Kalmus and Martin, 1990 ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) KBO Orientability 20/32

  25. MCD Dick, Kalmus and Martin, 1990 ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) for m × n matrix A and 0 � i � m � E n if i = 0 S A i = S A a i S A i − 1 ) κ i − 1 ( � otherwise KBO Orientability 20/32

  26. MCD Dick, Kalmus and Martin, 1990 ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) for m × n matrix A and 0 � i � m � E n if i = 0 S A i = S A a i S A i − 1 ) κ i − 1 ( � otherwise sum of all column vectors of S A s A m is denoted by � KBO Orientability 20/32

  27. MCD Dick, Kalmus and Martin, 1990 ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) for m × n matrix A and 0 � i � m � E n if i = 0 S A i = S A a i S A i − 1 ) κ i − 1 ( � otherwise sum of all column vectors of S A s A m is denoted by � Theorem s A is principal solution of A � KBO Orientability 20/32

  28. Example � 2 � � � 2 · w ( a ) − 3 · w ( b ) 0 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > KBO Orientability 21/32

  29. Example � 2 � � � 2 · w ( a ) − 3 · w ( b ) 0 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > performing MCD KBO Orientability 21/32

  30. Example � 2 � � � 2 · w ( a ) − 3 · w ( b ) 0 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > performing MCD � � 1 0 S A I = 0 0 1 � 1 � 3 0 ) κ = S A I = S A I 0 ((2 − 3) S A I 1 0 2 � 3 � 10 1 ) κ = S A I = S A I 1 (( − 3 5) S A I 2 2 6 KBO Orientability 21/32

  31. Example � 2 � � � 2 · w ( a ) − 3 · w ( b ) 0 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > performing MCD � � 1 0 S A I = 0 0 1 � 1 � 3 0 ) κ = S A I = S A I 0 ((2 − 3) S A I 1 0 2 � 3 � 10 1 ) κ = S A I = S A I 1 (( − 3 5) S A I 2 2 6 we obtain principal solution � � � � � � 3 10 13 s A I = � + = 2 6 8 KBO Orientability 21/32

  32. Example � 2 � � � 2 · w ( a ) − 3 · w ( b ) 0 − 3 > I = A I = − 3 · w ( a ) + 5 · w ( b ) 0 − 3 5 > performing MCD � � 1 0 S A I = 0 0 1 � 1 � 3 0 ) κ = S A I = S A I 0 ((2 − 3) S A I 1 0 2 � 3 � 10 1 ) κ = S A I = S A I 1 (( − 3 5) S A I 2 2 6 we obtain principal solution � � � � � � 3 10 13 s A I = � + = 2 6 8 which satisfies I . hence I is solvable KBO Orientability 21/32

  33. Bound by Norm KBO Orientability 22/32

  34. MCD ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) for m × n matrix A and 0 � i � m � if i = 0 E n S A i = S A a i S A i − 1 ) κ i − 1 ( � otherwise sum of all column vectors of S A s A m is denoted by � KBO Orientability 23/32

  35. MCD ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) for m × n matrix A and 0 � i � m � if i = 0 E n S A i = S A a i S A i − 1 ) κ i − 1 ( � otherwise sum of all column vectors of S A s A m is denoted by � GOAL s A ∈ { 0 , 1 , . . . , B } n bound � KBO Orientability 23/32

  36. MCD ( a 1 , . . . , a n ) κ = ( � e i | a i � 0) + +( a j � e i − a i � e j | a i < 0 , a j > 0) for m × n matrix A and 0 � i � m � if i = 0 E n S A i = S A a i S A i − 1 ) κ i − 1 ( � otherwise sum of all column vectors of S A s A m is denoted by � GOAL s A ∈ { 0 , 1 , . . . , B } n bound � APPROACH s A I � with B = � � s A I � define norm � · � to calculate � � KBO Orientability 23/32

  37. Norm Definition � A � = max i,j | a ij | for m × n matrix A = ( a ij ) ij KBO Orientability 24/32

  38. Norm Definition � A � = max i,j | a ij | for m × n matrix A = ( a ij ) ij Lemma for every m × n matrix A and n × p matrix B � a κ � = � a � KBO Orientability 24/32

  39. Norm Definition � A � = max i,j | a ij | for m × n matrix A = ( a ij ) ij Lemma for every m × n matrix A and n × p matrix B � a κ � = � a � � AB � � n � A �� B � KBO Orientability 24/32

  40. Norm Definition � A � = max i,j | a ij | for m × n matrix A = ( a ij ) ij Lemma for every m × n matrix A and n × p matrix B � a κ � = � a � � AB � � n � A �� B � ( a 1 , . . . , a n ) κ is n × k matrix with k � n 2 . i is m × k matrix with k � n 2 i . S A KBO Orientability 24/32

  41. Norm Definition � A � = max i,j | a ij | for m × n matrix A = ( a ij ) ij Lemma for every m × n matrix A and n × p matrix B � a κ � = � a � � AB � � n � A �� B � ( a 1 , . . . , a n ) κ is n × k matrix with k � n 2 . i is m × k matrix with k � n 2 i . S A i � � (2 m � A � ) 2 i − 1 � S A s A � � n 2 m · (2 m � A � ) 2 m − 1 � � KBO Orientability 24/32

  42. Lemma let R be TRS of size N I be set of inequalities induced by KBO with fixed precedence A I be of size m × n m � N n � N � A I � � N therefore s A I � � N 4 N +1 := B � � thus, s A I ∈ { 0 , 1 , . . . , B } n � KBO Orientability 25/32

  43. Main Result Theorem R is KBO N terminating ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating where, B = N 4 N +1 KBO Orientability 26/32

  44. Main Result Theorem R is KBO N terminating ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating where, B = N 4 N +1 Corollary Zankl and Middeldorp’s SAT and PBC encodings are complete for this B KBO Orientability 26/32

  45. Summary l → r ∈R ( | l | + | r | ) + 1 , and B = N 4 N +1 let R be TRS, N = � R is KBO R � 0 terminating ⇐ ⇒ R is KBO N terminating Korovin and Voronkov ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating this talk KBO Orientability 27/32

  46. Summary l → r ∈R ( | l | + | r | ) + 1 , and B = N 4 N +1 let R be TRS, N = � R is KBO R � 0 terminating ⇐ ⇒ R is KBO N terminating Korovin and Voronkov ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating this talk theoretical interest of decidability issue is more or less closed KBO Orientability 27/32

  47. Summary l → r ∈R ( | l | + | r | ) + 1 , and B = N 4 N +1 let R be TRS, N = � R is KBO R � 0 terminating ⇐ ⇒ R is KBO N terminating Korovin and Voronkov ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating this talk theoretical interest of decidability issue is more or less closed how about automation? ☞ KBO Orientability 27/32

  48. Automation KBO Orientability 28/32

  49. Dick, Kalmus, and Martin, 1990 Theorem KBO R � 0 termination is decidable by MCD KBO Orientability 29/32

  50. Dick, Kalmus, and Martin, 1990 Theorem KBO R � 0 termination is decidable by MCD Korovin and Voronkov, 2001, 2003 Theorem KBO R � 0 termination is decidable by Karmarkar/Khachiyan algorithm KBO Orientability 29/32

  51. Dick, Kalmus, and Martin, 1990 Theorem KBO R � 0 termination is decidable by MCD Korovin and Voronkov, 2001, 2003 Theorem KBO R � 0 termination is decidable by Karmarkar/Khachiyan algorithm Zankl and Middeldorp, 2007 Theorem KBO { 0 , 1 ,...,B } termination ( B ∈ N ) is decidable via SAT/PBC encodings KBO Orientability 29/32

  52. Dick, Kalmus, and Martin, 1990 Theorem KBO R � 0 termination is decidable by MCD Korovin and Voronkov, 2001, 2003 Theorem KBO R � 0 termination is decidable by Karmarkar/Khachiyan algorithm Zankl and Middeldorp, 2007 Theorem KBO { 0 , 1 ,...,B } termination ( B ∈ N ) is decidable via SAT/PBC encodings Theorem KBO R � 0 termination is decidable via SMT (linear arithmetic) encoding KBO Orientability 29/32

  53. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 KBO Orientability 30/32

  54. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB KBO Orientability 30/32

  55. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout KBO Orientability 30/32

  56. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 KBO Orientability 30/32

  57. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 simplex 370 105 4 KBO Orientability 30/32

  58. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 simplex 370 105 4 SAT/PBC( 4 ) 31/90 104/104 0/0 KBO Orientability 30/32

  59. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 simplex 370 105 4 SAT/PBC( 4 ) 31/90 104/104 0/0 SAT/PBC( 8 ) 32/93 106/106 0/0 KBO Orientability 30/32

  60. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 simplex 370 105 4 SAT/PBC( 4 ) 31/90 104/104 0/0 SAT/PBC( 8 ) 32/93 106/106 0/0 SAT/PBC( 16 ) 34/100 107/107 0/0 KBO Orientability 30/32

  61. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 simplex 370 105 4 SAT/PBC( 4 ) 31/90 104/104 0/0 SAT/PBC( 8 ) 32/93 106/106 0/0 SAT/PBC( 16 ) 34/100 107/107 0/0 SAT/PBC( 1024 ) 351/187 107/107 3/1 KBO Orientability 30/32

  62. Experiments test-bed: 1381 TRSs from Termination Problem Data Base 4.0 PC: 8 dual-core AMD Opteron 885, 2.6 GHz, 64 GB 60 seconds timeout method( B ) total time (sec) #success #timeout MCD 444 102 7 simplex 370 105 4 SAT/PBC( 4 ) 31/90 104/104 0/0 SAT/PBC( 8 ) 32/93 106/106 0/0 SAT/PBC( 16 ) 34/100 107/107 0/0 SAT/PBC( 1024 ) 351/187 107/107 3/1 SMT 26 107 0 KBO Orientability 30/32

  63. Conclusion l → r ∈R ( | l | + | r | ) + 1 , and B = N 4 N +1 let R be TRS, N = � R is KBO R � 0 terminating ⇐ ⇒ R is KBO N terminating Korovin and Voronkov ⇐ ⇒ R is KBO { 0 , 1 ,...,B } terminating this talk CONCLUSION finite characterization of KBO orientability use SMT solver to automate KBO Orientability 31/32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend