jack symmetric functions and the non orientability of
play

Jack Symmetric Functions and the Non-Orientability of Rooted Maps - PowerPoint PPT Presentation

Jack Symmetric Functions and the Non-Orientability of Rooted Maps Michael La Croix University of Waterloo January 4, 2012 Graphs, Surfaces, and Maps Example Definition A surface is a compact 2 -manifold without boundary. Definition A graph


  1. Jack Symmetric Functions and the Non-Orientability of Rooted Maps Michael La Croix University of Waterloo January 4, 2012

  2. Graphs, Surfaces, and Maps Example Definition A surface is a compact 2 -manifold without boundary. Definition A graph is a finite set of vertices together with a finite set of edges , such that each edge is associated with either one or two vertices. Definition A map is a 2-cell embedding of a graph in a surface. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  3. Graphs, Surfaces, and Maps Example Definition A surface is a compact 2 -manifold without boundary. Definition A graph is a finite set of vertices together with a finite set of edges , such that each edge is associated with either one or two vertices. Definition A map is a 2-cell embedding of a graph in a surface. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  4. Graphs, Surfaces, and Maps Example Definition A surface is a compact 2 -manifold without boundary. Definition A graph is a finite set of vertices together with a finite set of edges , such that each edge is associated with either one or two vertices. Definition A map is a 2-cell embedding of a graph in a surface. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  5. Ribbon Graphs and Flags Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  6. Ribbon Graphs and Flags Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  7. Ribbon Graphs and Flags Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  8. Ribbon Graphs and Flags Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  9. Rooted Maps Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  10. Rooted Maps Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  11. Rooted Maps Example Definition The neighbourhood of the graph determines a ribbon graph , and the boundaries of ribbons determine flags . Definition Automorphisms permute flags, and a rooted map is a map together with a distinguished orbit of flags. Note The map with no edges, , has a rooting. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 1 / 11

  12. A Combinatorial Encoding of Maps Equivalence classes can be encoded by perfect matchings of flags. Start with a ribbon graph. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  13. A Combinatorial Encoding of Maps Equivalence classes can be encoded by perfect matchings of flags. Start with a ribbon graph. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  14. A Combinatorial Encoding of Maps Equivalence classes can be encoded by perfect matchings of flags. M v M e M f Ribbon boundaries determine 3 perfect matchings of flags. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  15. A Combinatorial Encoding of Maps Equivalence classes can be encoded by perfect matchings of flags. M v M e Pairs of matchings determine, faces, Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  16. A Combinatorial Encoding of Maps Equivalence classes can be encoded by perfect matchings of flags. M v M f Pairs of matchings determine, faces, edges, Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  17. A Combinatorial Encoding of Maps Equivalence classes can be encoded by perfect matchings of flags. M e M f Pairs of matchings determine, faces, edges, and vertices. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  18. A Combinatorial Encoding of Maps M v 5 6’ 5’ 6 7’ 2 7 2’ M e 8 8’ 3’ 1 3 1’ 4’ 4 M f { 1 , 3 } , { 1 ′ , 3 ′ } , { 2 , 5 } , { 2 ′ , 5 ′ } , { 4 , 8 ′ } , { 4 ′ , 8 } , { 6 , 7 } , { 6 ′ , 7 ′ } � � M v = { 1 , 2 ′ } , { 1 ′ , 4 } , { 2 , 3 ′ } , { 3 , 4 ′ } , { 5 , 6 ′ } , { 5 ′ , 8 } , { 6 , 7 ′ } , { 7 , 8 ′ } � � M e = { 1 , 1 ′ } , { 2 , 2 ′ } , { 3 , 3 ′ } , { 4 , 4 ′ } , { 5 , 5 ′ } , { 6 , 6 ′ } , { 7 , 7 ′ } , { 8 , 8 ′ } � � M f = Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 2 / 11

  19. Hypermaps Generalizing the combinatorial encoding, an arbitrary triple of perfect matchings determines a hypermap when the triple induces a connected graph, with cycles of M e ∪ M f , M e ∪ M v , and M v ∪ M f determining vertices, hyperfaces, and hyperedges. Example Hypermaps both specialize and generalize maps. Example ֒ → Hypermaps can be represented as face-bipartite maps. Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 3 / 11

  20. Hypermaps Generalizing the combinatorial encoding, an arbitrary triple of perfect matchings determines a hypermap when the triple induces a connected graph, with cycles of M e ∪ M f , M e ∪ M v , and M v ∪ M f determining vertices, hyperfaces, and hyperedges. Example Hypermaps both specialize and generalize maps. Example ֒ → Maps can be represented as hypermaps with ǫ = [2 n ] . Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 3 / 11

  21. The Hypermap Series Definition The hypermap series for a set H of hypermaps is the combinatorial sum � x ν ( h ) y φ ( h ) z ǫ ( h ) H ( x , y , z ) := h ∈H where ν ( h ) , φ ( h ) , and ǫ ( h ) are the vertex-, hyperface-, and hyperedge- degree partitions of h . Example Example x 3 x 3 x 3 x 3 x 3 x 3 x 2 x 2 x 2 x 2 x 2 x 2 � x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 � y 5 ) z 6 Rootings of contribute 12 ( y 3 y 3 y 3 y 4 y 4 y 5 y 5 2 to the sum. y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 4 y 4 y 4 y 5 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 3 3 Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 4 / 11

  22. The Hypermap Series Definition The hypermap series for a set H of hypermaps is the combinatorial sum � x ν ( h ) y φ ( h ) z ǫ ( h ) H ( x , y , z ) := h ∈H where ν ( h ) , φ ( h ) , and ǫ ( h ) are the vertex-, hyperface-, and hyperedge- degree partitions of h . Example Example x 3 x 3 x 3 x 3 x 3 x 3 x 2 x 2 x 2 x 2 x 2 x 2 � x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 � y 5 ) z 6 Rootings of contribute 12 ( y 3 y 3 y 3 y 4 y 4 y 5 y 5 2 to the sum. y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 3 y 4 y 4 y 4 y 5 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 4 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 3 3 Michael La Croix (University of Waterloo) The Jack Parameter and non-orientability January 4, 2012 4 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend