instabilities and local bifurcations elements of theory
play

Instabilities and local bifurcations. Elements of theory G erard - PowerPoint PPT Presentation

Instabilities and local bifurcations. Elements of theory G erard Iooss IUF, Universit e de Nice, Laboratoire J.A.Dieudonn e, Parc Valrose, F-06108 Nice Cedex02 M.Haragus, G.Iooss. Local bifurcations, center manifolds, and normal forms


  1. Instabilities and local bifurcations. Elements of theory G´ erard Iooss IUF, Universit´ e de Nice, Laboratoire J.A.Dieudonn´ e, Parc Valrose, F-06108 Nice Cedex02 M.Haragus, G.Iooss. Local bifurcations, center manifolds, and normal forms in infinite dimensional systems (329p.). Springer UTX, 2011 G. Iooss (IUF, Univ. Nice) water waves 1 / 34

  2. Bifurcations in dimension 1 du dt = f ( u , µ ) , f (0 , 0) = 0 , ∂ f ∂ u (0 , 0) = 0 , µ parameter Saddle - node bifurcation Assume f is C k , k ≥ 2, in a neighborhood of (0 , 0), and ∂ 2 f ∂ f ∂µ (0 , 0) =: a � = 0 , ∂ u 2 (0 , 0) =: 2 b � = 0 . As ( u , µ ) → (0 , 0), f has the expansion f ( u , µ ) = a µ + bu 2 + o ( | µ | + u 2 ) u u u u 0 µ 0 µ 0 µ 0 µ a > 0 , b < 0 a > 0 , b > 0 a < 0 , b < 0 a < 0 , b > 0 G. Iooss (IUF, Univ. Nice) water waves 2 / 34

  3. Dim 1 - Pitchfork bifurcation Assume f is C k , k ≥ 3, in a neighborhood of (0 , 0), and satisfies ∂µ∂ u (0 , 0) =: a � = 0 , ∂ 3 f ∂ 2 f f ( − u , µ ) = − f ( u , µ ) , ∂ u 3 (0 , 0) =: 6 b � = 0 . Hence, as ( u , µ ) → (0 , 0), f has the expansion f ( u , µ ) = a µ u + bu 3 + o [ | u | ( | µ | + u 2 )], u = 0 is an equilibrium for all µ . u u u u µ µ µ µ 0 0 0 0 a > 0 , b < 0 a > 0 , b > 0 a < 0 , b < 0 a < 0 , b > 0 G. Iooss (IUF, Univ. Nice) water waves 3 / 34

  4. Dim 2 - Hopf bifurcation in R 2 du dt = F ( u , µ ) , F (0 , 0) = 0 , F is C k , k ≥ 3, in a neighborhood of (0 , 0). Define L := D u F (0 , 0). Assume L has a pair of complex conjugated purely imaginary eigenvalues ± i ω , ω > 0: L ζ = i ωζ, L ζ = − i ωζ. Normal form theorem (seen later): for any integer p ≤ k , and any µ sufficiently small, there exists a polynomial Φ µ of degree p in ( A , A ), with complex coefficients functions of µ , taking values in R 2 , such that Φ 0 (0 , 0) = 0 , ∂ A Φ 0 (0 , 0) = 0 , ∂ A Φ 0 (0 , 0) = 0 , u = A ζ + A ζ + Φ µ ( A , A ) , A ∈ C , transforms the system into the differential equation dA dt = i ω A + AQ ( | A | 2 , µ ) + o ( | A | p ) , Q polynomial in | A | 2 , Q (0 , 0) = 0 G. Iooss (IUF, Univ. Nice) water waves 4 / 34

  5. Hopf bifurcation - continued dA dt = i ω A + A ( a µ + b | A | 2 ) + o ( | A | ( | µ | + | A | 2 )) , Assume a r � = 0 and b r � = 0. Truncated system: set A = re i φ , dr r ( a r µ + b r r 2 ) (pitchfork bifurcation for radial part) = dt d φ ω + a i µ + b i r 2 , (frequency of bifurcated periodic solution) = dt A A A 0 µ case a r > 0, b r < 0 G. Iooss (IUF, Univ. Nice) water waves 5 / 34

  6. Hyperbolic situation in R n du dt = F ( u ) , F (0) = 0 , DF (0) = L M + + + C O M - - 0 σ− σ+ left: spectrum of L , center: linear situation, right: nonlinear situation G. Iooss (IUF, Univ. Nice) water waves 6 / 34

  7. Hyperbolic situation in R n continued u = X + Y , X = P + u ∈ E + , Y = P − u ∈ E − dX = L + X + P + R ( X + Y ) dt dY = L − Y + P − R ( X + Y ) dt Unstable manifold M + : solve in u ( t ) , t ≤ 0, with u ( t ) → 0 as t → −∞ � t � t u ( t ) = e L + t X + e L + ( t − s ) P + R ( u ( s )) ds + e L − ( t − s ) P − R ( u ( s )) ds 0 −∞ Then, by implicit function theorem, u ( t ) = Φ + ( X , t ), and u (0) = Φ + ( X , 0) = X + Ψ + ( X ), with Ψ + ( X ) ∈ E − G. Iooss (IUF, Univ. Nice) water waves 7 / 34

  8. Center manifold in R n Pliss 1964, Kelley 1967, Lanford 1973, Henry 1981, Mielke 1988, Kirrmann 1991, Vanderbauwhede - Iooss 1992 du dt = Lu + R ( u , µ ) , ( u , µ ) ∈ R n × R m , R (0 , 0) = 0 , D u R (0 , 0) = 0 . spectrum of L = σ = σ − ∪ σ 0 Hypothesis: σ 0 = finite number of eigenvalues of finite mutiplicities sup λ ∈ σ − λ < − γ < 0 (gap assumption) R n = E 0 ⊕ E − , u = X + Y , X = P 0 u , Y = P − u 0 0 µ left: linear case for µ = 0, asymptotic solutions ∈ E 0 , right: non linear case G. Iooss (IUF, Univ. Nice) water waves 8 / 34

  9. Center Manifolds- idea of proof Theorem: { u = u 0 + Ψ ( u 0 , µ ) , ( u 0 , µ ) ∈ E 0 × R m } M µ = C k ( O 0 , E − ) , O 0 neighb of 0 in E 0 × R m ∈ Ψ Ψ (0 , 0) = 0 , D u 0 Ψ (0 , 0) = 0 . M µ locally invariant and locally attracting . Idea of proof: Even though u ( t ) stays bounded for t ∈ R , the first term and the integral below with L 0 may grow polynomially in t as t → −∞ . � t � t u ( t ) = e L 0 t X + e L 0 ( t − s ) P 0 R ( u ( s )) ds + e L − ( t − s ) P − R ( u ( s )) ds . 0 −∞ Need of a (smooth) ”cut-off” function on E 0 , modifying and making the system linear for its part in E 0 , outside a ball of small radius. This allows to work in a space of functions growing at infinity. New complications due to the fact that we deal with such functions (which may grow at −∞ with a small exponential). G. Iooss (IUF, Univ. Nice) water waves 9 / 34

  10. Center Manifolds in infinite dimensions du dt = Lu + R ( u , µ ) R (0 , 0) = 0 , D u R (0 , 0) = 0 L linear bounded Z → X , Z cont. embedded in X (both Hilbert spaces) R : ( Z × R m ) → X of class C k , k ≥ 2 in a neighborhood of 0 Hypothesis: (i) (gap assumption) spectrum σ of L = σ 0 ∪ σ − , For λ ∈ σ 0 , Re λ = 0, sup λ ∈ σ − Re λ < − γ < 0; (ii) σ 0 = finite number of eigenvalues of finite mutiplicities G. Iooss (IUF, Univ. Nice) water waves 10 / 34

  11. Center Manifolds in infinite dimensions - continued Hypothesis on the linearized system || ( i ω I − L ) − 1 || L ( X ) ≤ C | ω | for ω ∈ R , | ω | large. Then the following properties (iii) and (iv) are satisfied. Define: E 0 = P 0 X = P 0 Z , Z h = P h Z , X = E 0 ⊕ X h , Z = E 0 ⊕ Z h , η ∈ [0 , γ ] (iii) du h dt = L h u h + f , f ∈ C 0 ( R , X ) , sup t ∈ R e η t || f ( t ) || X < ∞ , Then, there exists a unique u h = K h f , such that K h f ∈ C 0 ( R , Z ) , sup t ∈ R e η t || K h f ( t ) || Z < C ( η ) sup t ∈ R e η t || f ( t ) || X , C ( η ) continuous on [0 , γ ]. (iv) du h dt = L h u h , u | t =0 ∈ Z h . Then, there exists a unique u h ∈ C 0 ( R + , Z h ) , || u h || Z ≤ c η e − η t , t ≥ 0. G. Iooss (IUF, Univ. Nice) water waves 11 / 34

  12. Reduced system for asymptotic dynamics and Symmetries du 0 = L 0 u 0 + P 0 R ( u 0 + Ψ ( u 0 , µ ) , µ ) := f ( u 0 , µ ) dt f (0 , 0) = 0 , D u 0 f (0 , 0) = L 0 , spectrum of L 0 : σ 0 Frequent case: 0 is a solution of the system for any µ R (0 , µ ) = 0, hence Ψ (0 , µ ) = 0 , f (0 , µ ) = 0 and the linear operator A µ := D u 0 f (0 , µ ) has the eigenvalues close to the imaginary axis of the linearized operator L µ := L + D u R (0 , µ ) G. Iooss (IUF, Univ. Nice) water waves 12 / 34

  13. Reduced system for asymptotic dynamics and Symmetries du 0 = L 0 u 0 + P 0 R ( u 0 + Ψ ( u 0 , µ ) , µ ) := f ( u 0 , µ ) dt f (0 , 0) = 0 , D u 0 f (0 , 0) = L 0 , spectrum of L 0 : σ 0 Frequent case: 0 is a solution of the system for any µ R (0 , µ ) = 0, hence Ψ (0 , µ ) = 0 , f (0 , µ ) = 0 and the linear operator A µ := D u 0 f (0 , µ ) has the eigenvalues close to the imaginary axis of the linearized operator L µ := L + D u R (0 , µ ) Presence of symmetry TLu = LTu , TR ( u , µ ) = R ( Tu , µ ) T | E 0 := T 0 is an isometry Then T Ψ ( u 0 , µ ) = Ψ ( T 0 u 0 , µ ) , for u 0 ∈ E 0 T 0 f ( u 0 , µ ) = f ( T 0 u 0 , µ ) . G. Iooss (IUF, Univ. Nice) water waves 12 / 34

  14. Computation of center manifold and reduced system NB. We compute Taylor expansions, in powers of ( u 0 , µ ) ∈ E 0 × R m D u 0 Ψ ( u 0 , µ ) du 0 dt = du h dt replace du 0 by L 0 u 0 + P 0 R ( u 0 + Ψ ( u 0 , µ ) , µ ), dt and replace du h by L h Ψ ( u 0 , µ ) + P h R ( u 0 + Ψ ( u 0 , µ ) , µ ) dt and identify powers of ( u 0 , µ ). G. Iooss (IUF, Univ. Nice) water waves 13 / 34

  15. Computation of center manifold and reduced system NB. We compute Taylor expansions, in powers of ( u 0 , µ ) ∈ E 0 × R m D u 0 Ψ ( u 0 , µ ) du 0 dt = du h dt replace du 0 by L 0 u 0 + P 0 R ( u 0 + Ψ ( u 0 , µ ) , µ ), dt and replace du h by L h Ψ ( u 0 , µ ) + P h R ( u 0 + Ψ ( u 0 , µ ) , µ ) dt and identify powers of ( u 0 , µ ). Example: quadratic order in u 0 : f ( u 0 , µ ) = L 0 u 0 + P 0 R 2 , 0 ( u 0 ) + P 0 R 0 , 1 ( µ ) + h . o . t . , h.o.t. depends on Ψ D u 0 Ψ 2 , 0 ( u 0 ) L 0 u 0 − L h Ψ 2 , 0 ( u 0 ) = P h R 2 , 0 ( u 0 ) leads to � ∞ e L h t P h R 2 , 0 ( e − L 0 t u 0 ) dt . Ψ 2 , 0 ( u 0 ) = 0 This may become tedious, and may lead to a complicate vector field in E 0 , in case of dimension > 1, specially if orders > 2 are required. Our purpose now is to simplify the reduced system, in using Symmetries and Normal form theory. G. Iooss (IUF, Univ. Nice) water waves 13 / 34

  16. Normal forms Poincar´ e, Birkhoff, Arnold, Belitskii, Elphick et al... p ≥ 2 , ∃ polynomial Φ µ : E 0 → E 0 , of degree p and a neighborhood O 0 of 0 in E 0 × R m , such that the local change of variable in E 0 u 0 = v 0 + Φ µ ( v 0 ) transforms the reduced system into a new system where N µ is a polynomial of degree p such that dv 0 dt = L 0 v 0 + N µ ( v 0 ) + ρ ( v 0 , µ ) , N 0 (0) = 0 , D v 0 N 0 (0) = 0 e L ∗ 0 t N µ ( v 0 ) N µ ( e L ∗ 0 t v 0 ) , ∀ ( t , v 0 ) ∈ R × E 0 , = o ( || v 0 || p ) . ρ ( v 0 , µ ) = NB. In case of analytical vector fields, there are results optimizing the degree p , giving a rest ρ exponentially small (G.I., E.Lombardi 2005) G. Iooss (IUF, Univ. Nice) water waves 14 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend