weak turbulence theory for reactive instabilities
play

Weak Turbulence Theory for Reactive Instabilities Peter H. Yoon 1 - PowerPoint PPT Presentation

Laboratory Space and Astrophysical Plasmas Pohang, Korea, June, 2008 Weak Turbulence Theory for Reactive Instabilities Peter H. Yoon 1 Kinetic instabilities Im ( , k ) Re ( , k ) = 0 , = Re ( , k ) /


  1. Laboratory Space and Astrophysical Plasmas Pohang, Korea, June, 2008 Weak Turbulence Theory for Reactive Instabilities Peter H. Yoon 1

  2. • Kinetic instabilities Im ǫ ( ω, k ) Re ǫ ( ω, k ) = 0 , γ = − ∂ Re ǫ ( ω, k ) /∂ω • Reactive instabilities Re ǫ ( ω + iγ, k ) + i Im ǫ ( ω + iγ, k ) = 0 • Weak turbulence theory available in the literature is valid only for kinetic instabilities • Most plasma instabilities that lead to turbulence is reactive

  3. Review of Textbook Weak Turbulence Theory � ∂ � � ∂t + v ∂ ∂x + e a E ∂ ∂E � • f a = 0 , ∂x = 4 π ˆ n e a dv f a m a ∂v a f a ( x, v, t ) = F a ( v, t ) + δf a ( x, v, t ) , E ( x, t ) = δE ( x, t ) • � ∂ � ∂ � � ∂t + e a δE ∂ ∂t + v ∂ ∂x + e a δE ∂ F a + δf a = 0 • m a ∂v m a ∂v � ∂ � ∂x δE = 4 π ˆ n e a dv δf a a

  4. Averaging over phase ∂ F a = − e a ∂ • ∂v � δf a δE � ∂t m a Insert back to the original equation � ∂ � ∂t + v ∂ δf a = − e a δE ∂F a ∂v − e a ∂ • ∂v ( δf a δE − < δf a δE > ) ∂x m a m a Two-time scales (slow and fast) � � dω δf a kω ( v, t ) e ikx − iωt • δf a ( x, v, t ) = dk ⇑ ⇑ fast slow � � ω − kv + i ∂ kω = − i e a ∂F a δf a • δE kω ∂t m a ∂v � � − i e a dω ′ ∂ � � dk ′ δE k ′ ω ′ δf a k − k ′ ω − ω ′ − < δE k ′ ω ′ δf a k − k ′ ,ω − ω ′ > m a ∂v

  5. � � ω − kv + i ∂ kω = − i e a ∂F a δf a • δE kω ∂t m a ∂v � � − i e a dω ′ ∂ � � dk ′ δE k ′ ω ′ δf a k − k ′ ω − ω ′ − < δE k ′ ω ′ δf a k − k ′ ,ω − ω ′ > m a ∂v • ω → ω + i ∂/∂t 1 g K = − i e a ∂ K = ( k, ω ) , • m a ω − kv + i 0 ∂v � dK ′ g K ( E K ′ f K − K ′ − < E K ′ f K − K ′ > ) • f K = g K F E K +

  6. � � � dK ′ g K • f K = g K F E K + E K ′ f K − K ′ − < E K ′ f K − K ′ > f K = f (1) + f (2) • + · · · K K � � � dK ′ g K g K − K ′ F • f K = g K F E K + E K ′ E K − K ′ − < E K ′ E K − K ′ > Insert f K to Poisson equation � 4 π ˆ ne a � • E K = − i dv f K k a

  7. ǫ ( K ): linear dielectric response ⇓ � �� � � � � 4 πe a ˆ n � • 0 = 1 + i dv g K F E K k a � � 4 πe a ˆ n i � � dK ′ � + dv g K g K − K ′ F E K ′ E K − K ′ − < E K ′ E K − K ′ > k a � �� � ⇑ χ (2) ( K ′ | K − K ′ ): (second-order) nonlinear response � � � dK ′ χ (2) ( K ′ | K − K ′ ) 0 = ǫ ( K ) E K + • E K ′ E K − K ′ − < E K ′ E K − K ′ >

  8. � dK ′ χ (2) ( K ′ | K − K ′ ) < E − K E K ′ E K − K ′ > 0 = ǫ ( K ) < E K E − K > + • At this point, reintroduce slow-time derivative ω → ω + i∂/∂t � � k, ω + i ∂ ǫ ( k, ω ) < E 2 > kω → ǫ < E 2 > kω • ∂t � � ǫ ( k, ω ) + i ∂ǫ ( k, ω ) ∂ < E 2 > kω → 2 ∂ω ∂t 0 = i ∂ǫ ( K ) ∂ ∂t < E 2 > K +Re ǫ ( K ) < E 2 > K + i Im ǫ ( K ) < E 2 > K • 2 ∂ω � dK ′ χ (2) ( K ′ | K − K ′ ) < E − K E K ′ E K − K ′ > +

  9. Summary of weak turbulence theory for kinetic instabilities Re ǫ ( K ) < E 2 > K = 0 • dispersion relation − Im ǫ ( K ) ∂ ∂t < E 2 > K = 2 < E 2 > K • ∂ Re ǫ ( K ) /∂ω � �� � ⇑ γ growth rate � 2 i dK ′ χ (2) ( K ′ | K − K ′ ) < E − K E K ′ E K − K ′ > + Im ∂ Re ǫ ( K ) /∂ω

  10. Weak Turbulence Theory for Reactive Instabilities � ∂ � ∂t + v ∂ δf a ( x, v, t ) = − e a δE ( x, t ) ∂F a ( v, t ) • ∂x m a ∂v − e a ∂ ∂v [ δE ( x, t ) δf a ( x, v, t ) − � δE ( x, t ) δf a ( x, v, t ) � ] m a Fourier transformation in space � dk δf a k ( v, t ) e ikx • δf a ( x, v, t ) = � ∂ � k ( v, t ) = − e a δE k ( t ) ∂F a ( v, t ) δf a • ∂t + ikv m a ∂v � − e a ∂ dk ′ [ δE k ′ ( t ) δf a k − k ′ ( v, t ) − � δE k ′ ( t ) δf a k − k ′ ( v, t ) � ] m a ∂v

  11. Quasilinear Theory Temporal dependence � k Ω ( v ) e − i Ω t δf a dω δf a • k ( v, t ) = Ω = ω + iγ k Ω ( v ) = − e a ∂F a − i (Ω − kv ) δf a • δE k Ω m a ∂v Inserting the above to Poisson equation we have ω 2 � 1 ∂F a � pa • 0 = 1+ dv ∂v = Re ǫ ( ω + iγ, k )+ i Im ǫ ( ω + iγ, k ) Ω − kv k a ∂ ∂t < δE 2 > k Ω e 2 γt = 2 γ < δE 2 > k Ω e 2 γt •

  12. Weak Turbulence Theory Temporal dependence � � δf a dω δf a k Ω ( v, t ) e − i Ω t , δE a dω δE a k Ω ( t ) e − i Ω t k ( v, t ) = k ( t ) = • ⇑ Ω = ω + iγ slow time ∂t < δE 2 > k Ω e 2 γt = 2 γ < δE 2 > k Ω e 2 γt + ∂ < δE 2 > k Ω ∂ e 2 γt • ∂t The extra factor ∂ < δE 2 > k Ω ∂t is determined by nonlinear wave kinetic equation

  13. Nonlinear theory Ω → Ω + i ∂ • ∂t k Ω = − e a ∂F a − i (Ω − kv ) δf a • δE k Ω m a ∂v � � − e a ∂ d Ω ′ � � �� dk ′ δE k ′ Ω ′ δf a δE k ′ Ω ′ δf a k − k ′ ,ω − Ω ′ − k − k ′ , Ω − Ω ′ m a ∂v 0 = ǫ ( k, Ω) < δE k Ω δE ∗ • k Ω > � � d Ω ′ χ ( k ′ , Ω ′ | k − k ′ , Ω − Ω ′ ) < δE ∗ dk ′ + k Ω δE k ′ Ω ′ δE k − k ′ , Ω − Ω ′ >

  14. Re-introduce slow time derivative Ω → Ω + i ∂/∂t k Ω > + i ∂ǫ ( k, Ω) ∂ 0 = ǫ ( k, Ω) < δE k Ω δE ∗ ∂t < δE k Ω δE ∗ • k Ω > 2 ∂ Ω � � d Ω ′ χ ( k ′ , Ω ′ | k − k ′ , Ω − Ω ′ ) < δE ∗ dk ′ + k Ω δE k ′ Ω ′ δE k − k ′ , Ω − Ω ′ > Dispersion relation 0 = ǫ ( k, ω + iγ ) = Re ǫ ( k, ω + iγ ) + i Im ǫ ( k, ω + iγ ) • Wave kinetic equation � � ∂ 2 i d Ω ′ χ ( k ′ , Ω ′ | k − k ′ , Ω − Ω ′ ) ∂t < δE k Ω δE ∗ dk ′ k Ω > = • ∂ǫ ( k, Ω) /∂ Ω × < δE ∗ k Ω δE k ′ Ω ′ δE k − k ′ , Ω − Ω ′ >

  15. Making use of ∂t < δE 2 > k Ω e 2 γt = 2 γ < δE 2 > k Ω e 2 γt + ∂ < δE 2 > k Ω ∂ e 2 γt • ∂t and ∂ < δE 2 > k Ω � � 2 i d Ω ′ χ ( k ′ , Ω ′ | k − k ′ , Ω − Ω ′ ) dk ′ • = ∂t ∂ǫ ( k, Ω) /∂ Ω × < δE ∗ k Ω δE k ′ Ω ′ δE k − k ′ , Ω − Ω ′ > We finally arrive at ∂ ∂t < δE 2 > k Ω e 2 γt = 2 γ < δE 2 > k Ω e 2 γt • � � 2 i d Ω ′ χ ( k ′ , Ω ′ | k − k ′ , Ω − Ω ′ ) dk ′ + ∂ǫ ( k, Ω) /∂ Ω × < δE ∗ k Ω δE k ′ Ω ′ δE k − k ′ , Ω − Ω ′ > e 2 γt

  16. Weak turbulence theory for kinetic vs reactive instabilities: Dispersion relation • Re ǫ ( k, ω ) = 0 kinetic • Re ǫ ( k, ω + iγ ) + i Im ǫ ( k, ω + iγ ) = 0 reactive

  17. Wave kinetic equation ∂ 2 Im ǫ ( k, ω ) ∂t < δE 2 > kω = − ∂ Re ǫ ( k, ω ) /∂ω < δE 2 > kω • � 2 i dK ′ χ (2) ( k ′ , ω ′ | k − k ′ , ω − ω ′ ) + Im ∂ Re ǫ ( k, ω ) /∂ω × < δE − k, − ω δE k ′ ,ω ′ δE k − k ′ ,ω − ω ′ > kinetic ∂ ∂t < δE 2 > k,ω + iγ e 2 γt = 2 γ < δE 2 > k,ω + iγ e 2 γt • � � 2 i dk ′ d ( ω + iγ ) ′ + ∂ǫ ( k, ω + iγ ) /∂ ( ω + iγ ) × χ ( k ′ , ω ′ + iγ ′ | k − k ′ , ω − ω ′ + iγ − iγ ′ ) × < δE ∗ k,ω + iγ δE k ′ ,ω ′ + iγ ′ δE k − k ′ ,ω − ω ′ + iγ − iγ ′ > e 2 γt reactive

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend