bifurcations and chaos in high speed milling
play

Bifurcations and chaos in high-speed milling an 2 and S. John Hogan - PowerPoint PPT Presentation

Bifurcations and chaos in high-speed milling an 2 and S. John Hogan 3 obert Szalai 1 , G R abor St ep 1 szalai@mm.bme.hu, 2 stepan@mm.bme.hu, 3 s.j.hogan@bristol.ac.uk MIT, Budapest University of Technology and Economics, University


  1. Bifurcations and chaos in high-speed milling an 2 and S. John Hogan 3 obert Szalai 1 , G´ R´ abor St´ ep´ 1 szalai@mm.bme.hu, 2 stepan@mm.bme.hu, 3 s.j.hogan@bristol.ac.uk MIT, Budapest University of Technology and Economics, University of Bristol – p.1

  2. Contents Introduction Discrete-time model Local bifurcations Chaos Delay-differential equation model – p.2

  3. High-speed milling (standard model) Calculation of the cutting force: F t c = K t wh 3 / 4 ( t ) and F n c = K n wh 3 / 4 ( t ) , [Tlusty, 2000], [Burns and Davies, 2002]. – p.3

  4. History Mostly stability results and simulation. Averaging and harmonic balance techniques [Minis, Y. Altintas] Semi-discretization [T. Insperger and G. Stepan] Time finite element analysis [B. Mann and P . Bayly] Heuristic assumptions for period-doubling boundaries [W. Corpus and W. Endres] Discrete time model [Davies and T. Burns] Analytical stability chart [R. Szalai and G. Stepan] – p.4

  5. Mechanical model c k x m F x x ( t − τ ) h ( t ) k 1 ∆ x ∆ x x ( t ) τ 1 τ 2 τ h h 0 Equation of motion: m ( h 0 + x ( t − τ ) − x ( t )) 3 / 4 , n x ( t ) = g ( t ) K w x ( t ) + ω 2 x ( t ) + 2 ζω n ˙ ¨ where � 0 , kτ ≤ t < kτ + τ 1 if g ( t ) = kτ + τ 1 ≤ t < ( k + 1) τ, k ∈ Z . 1 , if – p.5

  6. Discrete-time model c k m F x x (˜ t − ˜ τ ) h (˜ t ) k 1 ∆ x ∆ x x (˜ t ) ˜ τ 2 ˜ τ h h 0 x (˜ x (˜ t ) + s x (˜ ˜ t ∈ [˜ t 0 , ˜ m ¨ t ) + k ˙ t ) = 0 , t 0 + ˜ τ 1 ] � � x (˜ x (˜ τ 2 F c ( h (˜ t ∈ [˜ ˜ τ 1 , ˜ m ˙ t ) − ˙ t − ˜ τ 2 ) = ˜ t )) , t 0 + ˜ t 0 + ˜ τ ] , where h (˜ t ) = h 0 + x (˜ τ ) − x (˜ t − ˜ t ) , h 0 = v 0 ˜ τ , and F c ( h ( t )) = Kw h 3 / 4 ( t ) is the cutting force. – p.6

  7. Mathematical model � Natural eigenfrequency: ω n = s/m Relative damping: ζ = k/ (2 √ s m ) Dimensionless time: t = ω n ˜ t � 1 − ζ 2 . Dimensionless eigenfrequency: ˆ ω d = State transition between t j = t 0 + jτ and t j +1 is described by        x j +1  x j 0  = A  +  .  n ( h 0 + (1 − A 11 ) x j − A 12 v j ) 3 / 4 Kwτ 2 v j +1 v j mω 2 where x j = x ( t j ) , v j = ˙ x ( t j ) and    0 1  τ 1 A = exp − 1 ζ – p.7

  8. Stability The linearized equation around the fixed point        x j +1 A 11 A 12  x j  =  .   v j +1 A 21 + ˆ w (1 − A 11 ) A 22 − ˆ w A 12 v j � �� � B Stability boundaries: cr = det A + tr A + 1 cos(ˆ ω d τ ) + cosh( ζτ ) w f ˆ = ˆ ω d 2 A 12 sin(ˆ ω d τ ) cr = det A − 1 sinh( ζτ ) w ns = − 2ˆ ˆ ω d ω d τ ) , A 12 sin(ˆ where 3 Kτ 2 w = ˆ w 4 h 1 / 4 mω 2 n 0 – p.8

  9. Stability chart – p.9

  10. Flip Bifurcation Consider the following perturbation of the linear system around the fixed point in the basis of the eigenvectors X c ij ξ i n η j 0 1 0 1 0 1 0 1 n @ − 1 + a f ∆ ˆ @ ξ n +1 w 0 @ ξ n i + j =2 , 3 A = A + B C A , B C A X d ij ξ i n η j η n +1 0 λ 2 η n @ n i + j =2 , 3 Using center manifold and normal form reduction we find that there is a period two orbit on the center manifold � wa f − ∆ ˆ ξ 1 , 2 = , δ where 5 cosh( ζτ ) + cos(ˆ ω d τ ) δ = − ω d τ ) < 0 . 12 h 2 cosh( ζτ ) + 2 sinh( ζτ ) + cos(ˆ 0 Hence, the bifurcation is subcritical! – p.10

  11. Simulation – p.11

  12. Neimark-Sacker bifurcation Similarly, the Taylor expansion of the system in the eigenbasis   � c ij ξ i n η j � � � � � � n e iϕ ξ n +1 0 ξ n   i + j =2 , 3 = (1 + | a h | ∆ ˆ w ) +  .   � e − iϕ d ij ξ i n η j η n +1 0 η n  n i + j =2 , 3 The radius of the invariant circle (in the eigenbasis) s s w + | a h | 2 ∆ ˆ − 2 | a h | ∆ ˆ w 2 − | a h | ∆ ˆ w R = ≈ , 2(1 + | a h | ∆ ˆ w ) δ δ where δ = e − 5 ζτ 1 (4e 4 ζτ 1 − 3e 2 ζτ 1 − 1)(cosh( ζτ 1 ) − cos( ω d τ 1 )) , 32 h 2 0 This is subcritical, too! – p.12

  13. Simulation – p.13

  14. Period-2 motion with ‘fly-overs’ The motion exists if: cos(ˆ ω d τ )+cosh( ζτ ) w > 3ˆ ω d ˆ 2 7 / 4 sin(ˆ ω d τ ) It is stable when cos(2 ω d τ 1 ) + cosh(2 ζτ 1 ) w < 2 1 / 4 ω d ˆ sin(2 ω d τ 1 ) or sinh(2 ζτ 1 ) w < − 2 7 / 4 ω d ˆ sin(2 ω d τ 1 ) . – p.14

  15. Stability chart – p.15

  16. Bifurcation diagram 1 6 (a) 5 4 3 t n i o p 2 - d 2 o i r e p e l b a t s 1 x fixed point 0 -1 -2 -3 -4 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ^ w – p.16

  17. Bifurcation diagram 2 3 chaos (b) 2.5 2 stable period-2 point 1.5 x 1 fixed point unstable period-2 point 0.5 0 -0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ^ w – p.17

  18. Bifurcation diagram 3 3 (c) chaos 2.5 2 x fixed point 1.5 unstable period-2 orbits 1 0.5 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 ^ w – p.18

  19. Smale horseshoe s W F 3 (a) (b) P c 3 2 s switching�line W 0 P B 2 P 2.8 2 2.5 switching�line H 1 V 1 2.6 P 2 E D u W h 0 u 2 P W V 2 P 0 2.4 1 A P 1 v/h 0 h u 1.5 2.2 H 0 W P u s 2 W W P P 1 C 1 2 horseshoe 1 V 0 1.8 H 1 P 1 0.5 1.6 H 0 s W V P 1 1 1.4 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 0.6 0.8 1 1.2 1.4 1.6 1.8 x/h x/h 0 0 – p.19

  20. Chaos The transition matrix of the symbolic dynamics: � � � � 0 1 1 1 T 2 = ⇒ T irreducible T = , = 1 1 1 2 – p.20

  21. Delay differential equation model – p.21

  22. Mechanical model s k x m F x x ( t − τ ) h ( t ) k 1 ∆ x ∆ x x ( t ) τ 1 τ 2 τ h h 0 – p.22

  23. Mechanical model s k x m F x x ( t − τ ) h ( t ) k 1 ∆ x ∆ x x ( t ) τ 1 τ 2 τ h h 0 Equation of motion: m ( h 0 + x ( t − τ ) − x ( t )) 3 / 4 , n x ( t ) = g ( t ) K w x ( t ) + ω 2 x ( t ) + 2 ζω n ˙ ¨ where � 0 , kτ ≤ t < kτ + τ 1 if g ( t ) = kτ + τ 1 ≤ t < ( k + 1) τ, k ∈ Z . 1 , if – p.22

  24. Variational system Linearized equation with dimensionless time (ˆ t = ω n t ) : � � x (ˆ x (ˆ t ) + x (ˆ t ) = g (ˆ x (ˆ τ ) − x (ˆ t − ˆ ¨ t ) + 2 ζ ˙ t ) ˆ w t ) , w = 3 Kw/ (4 h 1 / 4 0 mω 2 where ˆ n ) is the dimenzionless chip width. – p.23

  25. Variational system Linearized equation with dimensionless time (ˆ t = ω n t ) : � � x (ˆ x (ˆ t ) + x (ˆ t ) = g (ˆ x (ˆ τ ) − x (ˆ t − ˆ ¨ t ) + 2 ζ ˙ t ) ˆ w t ) , w = 3 Kw/ (4 h 1 / 4 0 mω 2 where ˆ n ) is the dimenzionless chip width. Rewritten into 1 st order form ( x (ˆ t )) T ): t ) = ( x (ˆ x (ˆ t ) , ˙ τ ) = A (ˆ t ) x (ˆ t ) + B (ˆ t ) x (ˆ ˙ t − ˆ x (ˆ τ ) , where � � � � 0 1 0 0 A ( t ) = , B ( t ) = . − 1 − g ( t ) ˆ − 2 ζ w g ( t ) ˆ w 0 – p.23

  26. Stability analysis τ characteristic multiplier e λ ˆ � x ( t ) = e λt v ( t ) satisfies the equation such that v ( t ) = v ( t + ˆ τ ) – p.24

  27. Stability analysis τ characteristic multiplier e λ ˆ � x ( t ) = e λt v ( t ) satisfies the equation such that v ( t ) = v ( t + ˆ τ ) The periodic solution is assimptotically stable if for each characteristic multiplier | e λ ˆ τ | < 1 . – p.24

  28. Stability analysis τ characteristic multiplier e λ ˆ � x ( t ) = e λt v ( t ) satisfies the equation such that v ( t ) = v ( t + ˆ τ ) The periodic solution is assimptotically stable if for each characteristic multiplier | e λ ˆ τ | < 1 . Exploiting the first condition we are left with the BVP � � A ( t ) + e − λ ˆ τ B ( t ) − λ I v ( t ) = ˙ v ( t ) v (0) = v (ˆ τ ) . – p.24

  29. Stability analysis The BVP is solvable iff τ ) − I ) , 0 = f ( µ ) := det ( Φ (ˆ where τ ) = µ e ( A 2 + µ B 2 )ˆ τ 2 e ( A 1 + µ B 1 )ˆ τ 1 , Φ (ˆ µ = e − λ ˆ τ , � � � � 0 1 0 0 A 1 = , B 1 = , − 1 − 2 ζ 0 0 � � � � 0 1 0 0 A 2 = , B 2 = . − 1 − ˆ − 2 ζ w w ˆ 0 – p.25

  30. Argument principle τ ) − 1 f | µ | < 1 cause instability. They can Roots for which µ = (e λ ˆ be easily counted � � f ′ ( z ) 1 f ( z ) d z = 1 N = d arg f 2 πi 2 π γ γ n f (exp( j 2 π n i )) = 1 � arg f (exp(( j − 1) 2 π 2 π n i ) j =1 – p.26

  31. Stability chart – p.27

  32. Machining with ‘fly-over’ effect x ( t ) + 2 ζ ˙ ¨ x ( t ) + x ( t ) = g ( ϕ ) ˆ w (cos ϕ + 0 . 3 sin ϕ ) × × [ H (( h 0 + x ( t − 2 τ ) − x ( t − τ ))) F c (( h 0 + x ( t − τ ) − x ( t )) sin ϕ ) + H (( h 0 + x ( t − τ ) − x ( t − 2 τ ))) F c ((2 h 0 + x ( t − 2 τ ) − x ( t )) sin ϕ )] – p.28

  33. Numerical method Orthogonal collocation m m θ − θ i + r � � ϕ ( θ ) = ˜ ϕ ( θ i + j m ) P i,j ( θ ) P i,j ( θ ) = m m − θ i + r θ i + j j =0 r =0 ,r � = j m The equation is satisfied at c i,j ˙ ϕ ( c i,j − τ ϕ ( c i,j ) = f ( c i,j , ˜ ˜ ϕ ( c i,j ) , ˜ mod T )) – p.29 [Engelborghs and Doedel, 2001]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend