color instabilities in quark gluon plasma
play

Color Instabilities in Quark-Gluon Plasma Stanisaw Mrwczyski Jan - PowerPoint PPT Presentation

Color Instabilities in Quark-Gluon Plasma Stanisaw Mrwczyski Jan Kochanowski University, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 over 30 years St. Mrwczyski, 1) Stream instabilities of the quark-gluon


  1. Color Instabilities in Quark-Gluon Plasma Stanisław Mrówczyński Jan Kochanowski University, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1

  2. over 30 years St. Mrówczyński, 1) Stream instabilities of the quark-gluon plasma, Physica Letters B 214 , 587 (1988), Erratum B 656 , 273 (2007) 2) St. Mrówczyński, Plasma Instability at the initial stage of ultrarelativistic heavy-ion collisions, Physics Letters B 314 , 118 (1993)  5) St. Mrówczyński and M. Thoma, Hard loop approach to anisotropic systems, Physical Review D 62 , 036011 (2000)  17) St. Mrówczyński, B. Schenke and M. Strickland, Color instabilities in the quark-gluon plasma, Physics Reports 682 , 1 (2017)  2

  3. Elementary Physics Story on Color Instabilities in Quark-Gluon Plasma 3

  4. Hadrons, Quarks & Gluons baryons mesons      N *      , K , , , n , p , , , , , , ,     q , q q , q , q 4

  5. Confinement Electrodynamics Chromodynamics r energy density     1 1       2 D E , 0, u ED E   8 8 Gauss law r 2 e e         E r V r        const E 4 g 2 r r   4 g 4 g        E r V r r K. Kogut & L. Susskind, Phys. Rev, D 9 , 3501 (1974)   H.B. Nielsen & P. Olesen, Nucl. Phys. B 61 , 45 (1973) 5

  6. Confinement cont.   V r linear 2 2 m c q 0 r Coulomb The potential is studied in spectroscopy of heavy quarkonia. 6

  7. Asymptotic Freedom   12 2  Color charge vanishes at small distances ( Q ) s   2 Q    33 2 N ln     f  2   QCD Sourceless Maxwell equations in a medium   D 0     D E B H   B 0     2    E 0    1 B      2 2 E c t    c t     2  1 D    B 0     H 2  2 c t    c t c phase velocity of EM wave   in vacuum 1  7

  8. Asymptotic Freedom cont. diamagnetic dielectric    1   1 charges are screened   1 paramagnetic paraelectric      1 1 charges are antiscreened ! Quarks of spin ½ produce diamagnetic effect Gluons win! Gluons of spin 1 produce paramagnetic effect G. ’t Hooft, unpublished N. K. Nielsen, Am. J. Phys. 49 , 1171 (1981) 8

  9. Creation of Quark-Gluon Plasma compression of nuclear matter    3 0.12 fm 0 normal nuclear density 1 fm heating up hadron gas  3 ~ T hadron density   m T   natural system of units:  c k B 9

  10. Phase diagram of strongly interacting matter T Quark-Gluon Plasma critical point ~ 180 MeV Hadron Gas Color Superconductor  0     0 3 0 . 12 fm B B baryon density nuclei 10

  11. Schematic phase diagram of water T supercritical vapor critical point g as liquid solid gas & liquid   T 0  triple point density of molecules 11

  12. Relativistic heavy-ion collisions after free hadrons t freeze-out hadrons hadronization equilibration time quarks & gluons z before    An important role of boost invariance 2 2 t z 12

  13. Quark-Gluon Plasma vs. EM Plasma Electromagnetic Quark-Gluon Plasma Plasma Underlying QCD QED Microscopic Theory  g g g g Elementarny Interactions g g g g e e q q quarks, antiquarks electrons, positrons Fermions Constituents Massless gluons photons Gauge Bosons - massive ions 2 g 2 e 1      2     ( Q ) 0 . 1 1 Coupling 4 4 137 13

  14. Ultrarelativistic Quark-Gluon Plasma Plasma constituents – quarks & gluons – are massless! m q  T Temperature T is often the only dimensional parameter.  3 ~ T density: T  1 l ~ inter-particle spacing :  4 ~ T energy density: 4 p ~ T pressure: 14

  15. Weakly Coupled Quark-Gluon Plasma Plasma from the earliest stage of relativistic heavy-ion collisions is assumed to be weakly coupled.   12 Asymptotic freedom formula:  2 ( Q ) s   2   Q  33 2 N ln     f  2   QCD   1 / 4 Dimensional argument: Q  - energy density 15

  16. Plasma manifests collective behavior r   1 1 e D   screening length ~ V ( r ) ~ D m D gT r V ( r ) Coulomb screened Debye sphere 0  r D 4 1 1 3 3     V ~ , n ~ T , n V ~ 1 if g 1 D D D 3 3 3 3 g T g In a weakly coupled plasma, there are many particles in a Debye sphere ! 16

  17. Screening length Poisson equation charge density    e  V ( ) r ( ) r  ( ) r r  e V ( ) r T 0 eV ( ) r eV ( ) r eV ( ) r         e 1 1 1 T   eV ( ) r  T T     ( ) r e 1  T  0    2 e      V ( ) r e ( ) r 0 V ( ) r T Debye mass  1 ~   m e 0 eT D  T 2 d  D   m x 2 V x ( ) m V x ( ) V x ( ) ~ e D D 2 dx  3 0 ~ T 17

  18. Plasma oscillations charge fluctuation       E ( t , r ) E cos( ( k ) t k r ) 0    ( ) k ~ gT p  k 0 plasma or Langmuir frequency E 18

  19. Plasma frequency l Gauss theorem   Q s   ES flux E  E  0 0   charge Q e Sx s   E e x electric field E  0 x x Equation of motion Quark-gluon plasma Harmonic oscillator  e g       2 x x M x F p  3 ~ T   M mSl mass m ~ T plasma frequency    e m  ~ gT  F QE force p p    charge Q   e Sl 19

  20. Landau damping E x    ( t , x ) E cos( t kx ) 0 0   0 v  k Resonance energy transfer from electric field to particles with v = v φ 20

  21. Instabilities stationary state Instability     t   A ( t ) A A ( t ) A ( t ) e 0   0 fluctuation stable configuration unstable configuration A A ( t ) 0 A A ( t ) 0 21

  22. Plasma instabilities instabilities in configuration space – hydrodynamic instabilities instabilities in momentum space – kinetic instabilities instabilities due to non-equilibrium  T  E momentum distribution   f ( p ) ~ exp is not   22

  23. Kinetic instabilities    i ( t kr )  k || E , ~ e longitudinal modes –    i ( t kr )   k E , j ~ e transverse modes – E – electric field , k – wave vector , ρ – charge density , j – current Which modes are relevant for QGP from relativistic heavy-ion collisions? 23

  24. Logitudinal modes unstable configuration f ( p , p , p ) plasma x y z beam p 0 x Energy is transferred from particles to fields. 24

  25. Logitudinal modes Electric field decays - damping Electric field grows - instability f ( p , p , p ) f ( p , p , p ) x y z x y z p x p x   0 0 E E k k x x particle particle particle particle acceleration deceleration acceleration deceleration  p x - particle’s velocity - phase velocity of the electric field wave, 25 k E x

  26. Parton momentum distribution in AA collisions p x ˆ e p y Momentum distribution has a single maximum and monotonously decreases in every direction. Longitudinal unstable modes are irrelevant for relativistic heavy-ion collisions. There are unstable transverse modes. 26

  27. Evolution of Parton Momentum Distribution time p p T T p p L L prolate oblate 27

  28. Seeds of instability  x but current fluctuations are finite  j a ( ) 0   3 1 d p p p      ab p  ( 3 )   j ( x ) j ( x ) f ( ) ( x v t ) 0 a 1 b 2  3 2 2 ( 2 ) E p  x ( , t x )  2 2 2     x ( t t , x x )  x ( , t x ) 1 2 1 2 1 1 1 Direction of the momentum surplus 28

  29. Mechanism of filamentation z Lorentz force F  q  F v B F v v   v v F F j Ampere’s law z   B  j B y  y x 29

  30. Time scale & collisional damping Time scale of collective phenomena 1 1   t ~ ~ ~ gT collec collec gT t collec Frequency of collisions Parton-parton scattering    4 hard ~ g ln 1/ g T hard scattering: q ~ T q    2 soft ~ g ln 1/ g T soft scattering: q ~ gT        2 g 1 hard soft collec The instabilities are fast! 30

  31. Growth of instabilities – 1+1 numerical simulations SU(2) Hard Loop Dynamics total transverse magnetic 1+1 dimensions    A A ( z t , ) Scaled a a field energy density Anisotropic particle’s momentum distribution    f ( p ) f (| p | p ) iso z   df ( p )  2 2   s iso m dpp D  dp 0 γ * - maximal growth rate Strong anisotropy   10 A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. 94 , 102303 (2005) 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend