incoherent multiple scattering in pa and vector boson
play

Incoherent multiple scattering in pA and Vector boson-tagged jet - PowerPoint PPT Presentation

Incoherent multiple scattering in pA and Vector boson-tagged jet production in AA Hongxi Xing NU/ANL In collaboration with Z-B. Kang and I. Vitev Santa Fe Jet and Heavy Flavor 2017 Outline q Multiple scattering expansion in p+A collisions


  1. Incoherent multiple scattering in pA and Vector boson-tagged jet production in AA Hongxi Xing NU/ANL In collaboration with Z-B. Kang and I. Vitev Santa Fe Jet and Heavy Flavor 2017

  2. Outline q Multiple scattering expansion in p+A collisions Nuclear modifications: small-x suppression and large-x enhancement Probe QCD dynamics of coherent and incoherent multiple scattering q Vector boson-tagged jet production in A+A collisions Excellent channel to constrain quark energy loss effect q Summary 2

  3. 3

  4. § Multiple scattering expansion Y = ln 1 forward x ����������� ������� ����������������������� ���������������� ������� Parton density increases �������������� backward ln Q 2 I. Vitev, J. Qiu, PLB, 2006 § Coherent multiple scattering (small-x) ✓ m ◆ 1 1 Probing length: � 2 R Q ⇠ x b P b p In forward rapidity region, x b is small, the probe interacts with the whole nucleus coherently. 4

  5. Incoherent multiple scattering in p+A collisions § Backward rapidity region – incoherent multiple scattering Single scattering Double scattering ✓ m ◆ 1 1 Probing length: < 2 R Q ∼ x b P b p In backward rapidity region, x b is large. The probe interacts with the nucleus incoherently, we need to calculate multiple scattering contributions order by order, the leading contribution comes from double scattering. § multiple scattering expansion d σ pA → hX = d σ ( S ) pA → hX + d σ ( D ) pA → hX + · · · Z dz Z dx 0 Z dx d σ ( S ) = α 2 s X x f b/A ( x ) H U s, ˆ s + ˆ x 0 f a/p ( x 0 ) z 2 D c ! h ( z ) ab ! cd (ˆ t, ˆ u ) δ (ˆ t + ˆ u ) E h d 3 P h S a,b,c 5

  6. § Double scattering Feynman diagrams ( as an example) qq 0 → qq 0 Initial state double scattering x ′ P ′ x ′ P ′ x ′ P ′ p c p c p c k g k ′ k g k ′ k ′ k g g g g p d p d p d ( x 1 + x 3 ) P x 1 P ( x 1 + x 3 ) P x 1 P ( x 1 + x 3 ) P x 1 P ( L ) ( R ) ( M ) Final state double scattering x ′ P ′ x ′ P ′ x ′ P ′ p c p c p c p d p d p d k ′ k ′ k ′ k g k g k g ( x 1 + x 3 ) P ( x 1 + x 3 ) P ( x 1 + x 3 ) P x 1 P x 1 P x 1 P g g g ( M ) ( L ) ( R ) § Double scattering cross section (twist-4 contribution) Z dz Z dx 0 d σ ( D ) ∂ 2 ✓ − 1 ◆  1 � Z x 0 f a/p ( x 0 ) z 2 D c ! h ( z ) dx 1 dx 2 dx 3 T ( x 1 , x 2 , x 3 ) H ( x 1 , x 2 , x 3 , k ? ) E h 2 g ρσ ∝ d 3 P h ∂ k ρ 2 ? ∂ k σ ? k ⊥ 6

  7. § Final contribution (incoherent multiple scattering) Kang, Vitev, HX , PRD 2013 ✓ 8 π 2 α s ◆ α 2 Z dz Z dx 0 Z dx d σ ( D ) s X s + ˆ = z 2 D c ! h ( z ) x 0 f a/p ( x 0 ) x δ (ˆ t + ˆ u ) E h d 3 P h N 2 c − 1 S a,b,c 2 3 4 x 2 ∂ 2 T ( i ) ∂ T ( i ) b/A ( x ) b/A ( x ) + T ( i ) X 5 c i H i s, ˆ b/A ( x ) ab ! cd (ˆ t, ˆ u ) − x × ∂ x 2 ∂ x i = I,F Only central-cut contributes. c I = − 1 t − 1 ˆ ˆ s c F = − 1 t − 1 ˆ ˆ u  C F H U a=quark ab → cd double scattering  H I ab → cd = (a: incoming) C A H U a=gluon hard factor  ab → cd C F H U  c=quark ab → cd  H F ab → cd = (c: outgoing) C A H U c=gluon  ab → cd 7

  8. § Nuclear modification factor – light hadron Kang, Vitev, HX , in preparation 1 . 8 3 h ± , ξ 2 = 0 . 12 R pA R pA PHENIX prel. preliminary High-twist ξ 2 = 0 . 12 preliminary h ± , ξ 2 = 0 . 09 High-twist ξ 2 = 0 . 09 π 0 , ξ 2 = 0 . 12 1 . 6 2 . 5 π 0 , ξ 2 = 0 . 09 1 . 4 2 1 . 2 1 . 5 1 1 0 . 8 π 0 in p+Au min. bias, √ s = 200 GeV, | y | < 0 . 35 p+Au min. bias, √ s = 200 GeV, 2 < p T < 5 GeV 0 . 6 0 . 5 2 3 4 5 6 7 8 9 10 11 − 2 . 5 − 2 − 1 . 5 − 1 − 0 . 5 0 p T (GeV) y 4 π 2 α s q,g/A ( x ) = 4 π 2 α s q,g/A ( x ) = ξ 2 ⇣ ⌘ T ( I ) T ( F ) A 1 / 3 − 1 f q,g/A ( x ) N c N c Only one parameter, fixed by DIS data ξ 2 = 0 . 09 − 0 . 12 GeV 2 Incoherent multiple scattering leads to significant enhancement effect in intermediate p_T region. 8

  9. Heavy meson production in p+A § Incoherence multiple scattering in heavy meson production d σ pA → HX = d σ ( S ) pA → HX + d σ ( D ) pA → HX + · · · Single scattering Double scattering H Q H Q Kang, Vitev, HX , PLB 2015 2.5 2.5 R dAu R pPb PHENIX -2.0 < y < -1.4 ALICE -4.0 < y < -2.96 (preliminary) 2 Theory 2 Theory 1.5 1.5 1 1 0.5 0.5 Heavy-flavor muons in d+Au min. bias, √ s=200 GeV Heavy-flavor muons in p+Pb min. bias, √ s=5020 GeV 0 0 0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20 p T (GeV) p T (GeV) 9

  10. Probe of parton energy loss mechanism Jet tomography Knowledges of initial states - pp baseline § Jet-medium interaction § Medium evolution § 10

  11. Ideal channel for hard probes – V+Jet Z § Electroweak bosons are not affected by the hot dense medium § Provide good constraints on the energy and flavor origins of the away-side parton shower § Uncertainties from background contributions are significantly reduced 11

  12. p+p baseline § NLO fixed order calculation § Sudakov resummation Photon+jet: Dai, Vitev, Zhang, PRL 2012 See Guangyou’s talk Z+jet: Neufeld, Vitev, PRL 2012 § Parton shower Monte Carlo simulation Pythia 8: Leading order pQCD + leading logarithmic parton shower 10 2 10 1 CMS CMS PYTHIA-8 p+p PYTHIA-8 p+p 10 0 10 1 γ +jet, √ s = 8 TeV Z+jet, √ s = 7 TeV R = 0 . 5 , p J R = 0 . 5 , | y J | < 2 . 4 T > 30 GeV T [pb / GeV] T [pb / GeV] 10 − 1 | y J | < 2 . 4 , | y γ | < 1 . 4 71 < m ℓℓ < 111 GeV | p ℓ T | > 20 GeV , | y ℓ | < 2 . 4 10 0 10 − 2 d σ / dp J d σ / dp γ 10 − 1 10 − 3 10 − 2 10 − 4 10 − 5 10 − 3 0 100 200 300 400 500 600 700 0 50 100 150 200 250 300 350 400 450 p J T p γ T Reasonable good description of the LHC p+p data 12

  13. Flavor origins of the recoil jets 1 . 2 1 . 2 q + ¯ q + ¯ γ + jet , √ s = 5 . 02 TeV p + p , √ s = 5 . 02 TeV q q q (¯ q )+g q (¯ q )+g | y J | < 1 . 6 , p Z p γ T > 60 GeV T > 60 GeV 1 1 0 . 8 0 . 8 Fractions Fractions 0 . 6 0 . 6 0 . 4 0 . 4 0 . 2 0 . 2 0 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 p J p J T T § leading logarithmic approximation § Isolated photon: minimize contributions from jet fragmentation § Both photon+jet, Z+jet productions are dominated by q+g channel -> the produced jet originates from light quark, good probe of quark energy loss effect 13

  14. Jet energy loss in nuclear medium Final-state quark-gluon plasma effects include medium-induced parton splitting and the dissipation of the energy of the parton shower through collisional interactions in the strongly-interacting matter. Neufeld, Vitev, PRC 2012 Parton shower energy dissipation in the QGP § Neufeld, Vitev, HX , PRD 2014 14

  15. Medium induced radiative energy loss § SCET G (Idilbi, Majumder, Ovanesyan, Vitev …) • Medium induced gluon radiation • Ovanesyan, Vitev, 2012 Z ∞ dN g q,g ( ω , r ) 1 Z ✓ 1 d σ el ( ∆ z ) ◆� d 2 q − δ 2 ( q ) C R α s d ∆ z ∝ d ω dr λ g ( ∆ z ) σ el ( ∆ z ) d 2 q 0  ( k − q ) 2 ⇢ �� 2 k · q 1 − cos ∆ z × k 2 ( k − q ) 2 2 ω 15

  16. V+jet production in heavy ion collisions Suppression of jets (soft gluon approximation) § Z 1 d ✏ P q,g ( ✏ ) J ( q,g ) ( ✏ ) d � LO+PS � p V T , J ( q,g ) ( ✏ ) p J � d � AA 1 X q,g T = dp V T dp J dp V T dp J h N bin i 0 T T q,g Superposition of proto-jets of initially higher transverse momentum • p J P T = J q,g ( ✏ ) p J T T = 1 − f q,g · ✏ Fraction of the energy redistributed • outside the jet R R R E ω d 2 N g 0 dr ω coll d ω q,g f q,g ( R, ω coll ) = 1 − d ω dr R R max R E 0 d ω ω d 2 N g dr q,g 0 d ω dr probability to lose energy due to multiple gluon emission (Poisson approx.) • 10 P( ε ) Pb+Pb d ✏ P ( ✏ ) ✏ = h ∆ E i Z Z d ✏ P ( ✏ ) = 1 E 1 Kang and Vitev, PRD 84,014034 (2011) g -1 10 q c E J =25 GeV b -2 -1 10 10 1 ε 16

  17. Transverse momentum asymmetry (Z+jet) Z p J max p J d σ (x JV , p V T (x JV , p J x JV = p J T )) d σ T min dp J T T = T x 2 d x JV dp V T dp J p V p J JV T T T 1 . 8 Part of the parton shower energy is CMS p+p CMS Pb+Pb 0 − 30% 1 . 6 Z+jet redistributed outside of the jet cone √ s = 5 . 02 TeV PYTHIA-8 p+p Rad. and Coll. E-loss g=2.0 radius, the jets p T are pushed to 1 . 4 Rad. and Coll. E-loss g=2.2 lower values, with boson p T 1 . 2 unchanged. This redistribution 1 d σ JZ dx JZ results in the downshift of x JV 0 . 8 σ Z 1 distribution. 0 . 6 0 . 4 Pythia pp baseline is narrower than 0 . 2 CMS measured x JZ, mainly due to the 0 smearing in CMS measurements. 0 0 . 5 1 1 . 5 2 x JZ 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend