resonances and unitarity in weak boson scattering at the
play

Resonances and Unitarity in Weak Boson Scattering at the LHC Jrgen - PowerPoint PPT Presentation

0/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Resonances and Unitarity in Weak Boson Scattering at the LHC Jrgen Reuter Albert-Ludwigs-Universitt Freiburg Alboteanu/Kilian/JR, arXiv:0806.4145 (


  1. 0/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Resonances and Unitarity in Weak Boson Scattering at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg Alboteanu/Kilian/JR, arXiv:0806.4145 ( JHEP ); M. Mertens, 2005; Kilian/Kobel/Mader/JR/Schumacher, work in progress; Beyer/Kilian/Krstonoši´ c/Mönig/JR/Schmitt/Schröder, EPJC 48 (2006), 353 [ILC version] Seminar, PSI, January 22, 2009

  2. 1/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Doubts on the Standardmodel – describes microcosm (too good?) |O meas − O fit |/ σ meas Measurement Fit 0 1 2 3 ∆α (5) ∆α had (m Z ) 0.02758 ± 0.00035 0.02768 m Z [ GeV ] m Z [ GeV ] 91.1875 ± 0.0021 91.1875 Γ Z [ GeV ] Γ Z [ GeV ] 2.4952 ± 0.0023 2.4957 – 28 free parameters σ 0 σ had [ nb ] 41.540 ± 0.037 41.477 R l R l 20.767 ± 0.025 20.744 A 0,l A fb 0.01714 ± 0.00095 0.01645 A l (P τ ) A l (P τ ) 0.1465 ± 0.0032 0.1481 R b R b 0.21629 ± 0.00066 0.21586 R c R c 0.1721 ± 0.0030 0.1722 A 0,b A fb 0.0992 ± 0.0016 0.1038 A 0,c A fb 0.0707 ± 0.0035 0.0742 A b A b 0.923 ± 0.020 0.935 A c A c 0.670 ± 0.027 0.668 A l (SLD) A l (SLD) 0.1513 ± 0.0021 0.1481 sin 2 θ lept (Q fb ) sin 2 θ eff 0.2324 ± 0.0012 0.2314 m W [ GeV ] m W [ GeV ] 80.398 ± 0.025 80.374 Γ W [ GeV ] Γ W [ GeV ] 2.140 ± 0.060 2.091 m t [ GeV ] m t [ GeV ] 170.9 ± 1.8 171.3 0 1 2 3 – Higgs ?, form of Higgs potential ? Hierarchy Problem M H [GeV] δm f ∝ v ln(Λ 2 /v 2 ) chiral symmetry: 750 no symmetry for quantum corrections to 500 Higgs mass 250 H ∝ Λ 2 ∼ M 2 Planck = (10 19 ) 2 GeV 2 δM 2 Λ[GeV] 20000 GeV 2 = ( 1000000000000000000000000000000020000 – 10 12 10 15 10 18 10 3 10 6 10 9 1000000000000000000000000000000000000 ) GeV 2

  3. 2/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Open Questions 60 – Unification of all interactions (?) 50 U(1) B ∼ 10 − 9 40 – Baryon asymmetrie ∆ N B − ∆ N ¯ -1 missing CP violation 30 SU(2) α i 20 Standard Model – Flavour: three generations 10 SU(3) 0 – Tiny neutrino masses: m ν ∼ v 2 10 10 12 10 14 10 16 10 10 2 10 4 10 6 10 8 10 18 µ (GeV) M – Dark Matter: ◮ stable ◮ only weakly interacting ◮ m DM ∼ 100 GeV – Quantum theory of gravity – Cosmic inflation – Cosmological constant

  4. 3/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Ideas for New Physics since 1970

  5. 4/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Model-Independent Description of the EW sector ◮ Higgs boson still not observed ◮ Aim: describe any physics beyond the SM as generically as possible ◮ Implement what we know about the SM ◮ Implements SU (2) L × U (1) Y gauge invariance ◮ Building blocks (including longitudinal modes): � − i � W a v w a τ a ψ ( SM fermions ) , µ ( a = 1 , 2 , 3) , B µ , Σ = exp ◮ Minimal Lagrangian including gauge interactions 2 g ′ 2 tr [ B µν B µν ] + v 2 1 1 X 2 g 2 tr [ W µν W µν ] − 4 tr [( D µ Σ)( D µ Σ)] L min = ψ ( i / D ) ψ − ψ

  6. 5/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 The Fundamental Building Blocks ◮ V = Σ( D Σ) † (longitudinal vectors), T = Σ τ 3 Σ † (neutral component) ◮ Unitary gauge (no Goldstones): w ≡ 0 , i.e., Σ ≡ 1 . � √ → − i g 2( W + τ + + W − τ − ) + 1 � Zτ 3 V − 2 c w → τ 3 T − ◮ Gaugeless limit (only Goldstones) ( g, g ′ → 0 ): � √ √ � → i 2 ∂w + τ + + 2 ∂w − τ − + ∂zτ 3 + O ( v − 2 ) V − v √ 2 i → τ 3 + 2 w + τ + − w − τ − � + O ( v − 2 ) � T − v So T projects out the neutral part: � w + ∂w − − w − ∂w + �� tr [ TV ] = 2i ∂z + i � + O ( v − 3 ) v v

  7. 6/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Electroweak Chiral Lagrangian Complete Lagrangian contains infinitely many parameters α i L i + 1 L (5) + 1 α (5) α (6) X ψ L Σ Mψ R + β 1 L ′ X X X L (6) + . . . L eff = L min − 0 + i i v 2 v ψ i i i 0 = v 2 L ′ 4 tr [ TV µ ] tr [ TV µ ] L 1 = tr [ B µν W µν ] L 6 = tr [ V µ V ν ] tr [ TV µ ] tr [ TV ν ] L 2 = itr [ B µν [ V µ , V ν ]] L 7 = tr [ V µ V µ ] tr [ TV ν ] tr [ TV ν ] L 3 = itr [ W µν [ V µ , V ν ]] 1 4 tr [ TW µν ] tr [ TW µν ] L 8 = L 4 = tr [ V µ V ν ] tr [ V µ V ν ] 2 tr [ TW µν ] tr [ T [ V µ , V ν ]] i L 9 = 2 (tr [ TV µ ] tr [ TV µ ]) 2 L 5 = tr [ V µ V µ ] tr [ V ν V ν ] 1 L 10 = Indirect info on new physics in β 1 , α i , . . . (Flavor physics only in M ) Electroweak precision observables (LEP I/II, SLC): ∆ S = − 16 πα 1 α 1 = 0 . 0026 ± 0 . 0020 ∆ T = 2 β 1 /α QED β 1 = − 0 . 00062 ± 0 . 00043 ∆ U = − 16 πα 8 α 8 = − 0 . 0044 ± 0 . 0026

  8. 7/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Anomalous triple and quartic gauge couplings " # λ γ “ ν W + µν − W + ν W − µν ” ν A µν + g γ W − + κ γ W − µ W + W − ν W + νρ A ρµ L T GC = i e 1 A µ µ M 2 W " # ν Z µν + λ Z + i e c w “ ν W + µν − W + ν W − µν ” g Z W − + κ Z W − µ W + W − ν W + νρ Z ρµ 1 Z µ M 2 µ s w W = κ γ,Z = 1 , λ γ,Z = 0 and δ Z = β 1+ g ′ 2 α 1 g V V ′ = 1 , h ZZ = 0 SM values: g γ,Z 1 c 2 w − s 2 1 / 2 w ∆ κ γ = g 2 ( α 2 − α 1 ) + g 2 α 3 + g 2 ( α 9 − α 8 ) ∆ g γ 1 = 0 1 = δ Z + g 2 ∆ κ Z = δ Z − g ′ 2 ( α 2 − α 1 ) + g 2 α 3 + g 2 ( α 9 − α 8 ) ∆ g Z w α 3 c 2 − g 2 ∆ g γγ = ∆ g γγ ∆ g ZZ = 2∆ g γZ = 0 w ( α 5 + α 7 ) 1 2 2 1 c 4 = δ Z + g 2 ∆ g γZ = ∆ g γZ ∆ g W W = 2 c 2 w ∆ g γZ + 2 g 2 ( α 9 − α 8 ) + g 2 α 4 w α 3 1 2 c 2 1 1 + g 2 + 2 g 2 ( α 9 − α 8 ) − g 2 ( α 4 + 2 α 5 ) ∆ g ZZ = 2∆ g γZ ∆ g W W = 2 c 2 w ∆ g γZ w ( α 4 + α 6 ) 1 1 c 4 2 1 h ZZ = g 2 [ α 4 + α 5 + 2 ( α 6 + α 7 + α 10 )]

  9. 7/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Anomalous triple and quartic gauge couplings L QGC = e 2 h i g γγ 1 A µ A ν W − µ W + ν − g γγ 2 A µ A µ W − ν W + ν + e 2 c w h A µ Z ν “ ” i g γZ W − µ W + ν + W + µ W − − 2 g γZ A µ Z µ W − ν W + 1 ν 2 ν s w + e 2 c 2 h i w g ZZ Z µ Z ν W − µ W + ν − g ZZ Z µ Z µ W − ν W + 1 2 ν s 2 w e 2 e 2 » ” 2 – “ g W W W − µ W + ν W − µ W + ν − g W W W − µ W + h ZZ ( Z µ Z µ ) 2 + + 1 2 µ 2 s 2 4 s 2 w c 4 w w = κ γ,Z = 1 , λ γ,Z = 0 and δ Z = β 1+ g ′ 2 α 1 g V V ′ = 1 , h ZZ = 0 SM values: g γ,Z 1 c 2 w − s 2 1 / 2 w ∆ κ γ = g 2 ( α 2 − α 1 ) + g 2 α 3 + g 2 ( α 9 − α 8 ) ∆ g γ 1 = 0 1 = δ Z + g 2 ∆ κ Z = δ Z − g ′ 2 ( α 2 − α 1 ) + g 2 α 3 + g 2 ( α 9 − α 8 ) ∆ g Z w α 3 c 2 − g 2 ∆ g γγ = ∆ g γγ ∆ g ZZ = 2∆ g γZ = 0 w ( α 5 + α 7 ) 1 2 2 1 c 4 = δ Z + g 2 ∆ g γZ = ∆ g γZ ∆ g W W = 2 c 2 w ∆ g γZ + 2 g 2 ( α 9 − α 8 ) + g 2 α 4 w α 3 1 2 c 2 1 1 + g 2 + 2 g 2 ( α 9 − α 8 ) − g 2 ( α 4 + 2 α 5 ) ∆ g ZZ = 2∆ g γZ ∆ g W W = 2 c 2 w ∆ g γZ w ( α 4 + α 6 ) 1 1 c 4 2 1 h ZZ = g 2 [ α 4 + α 5 + 2 ( α 6 + α 7 + α 10 )]

  10. 8/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Parameters and Scales, Resonances α i measurable at ILC ◮ α i ≪ 1 (LEP) ◮ α i � 1 / 16 π 2 ≈ 0 . 006 (renormalize divergencies, 16 π 2 α i � 1 ) Translation of parameters into new physics scale Λ : α i = v 2 / Λ 2 ◮ Operator normalization is arbitrary ◮ Power counting can be intricate To be specific: consider resonances that couple to EWSB sector Resonance mass gives detectable shift in the α i ◮ Narrow resonances ⇒ particles ◮ Wide resonances ⇒ continuum β 1 ≪ 1 ⇒ SU (2) c custodial symmetry (weak isospin, broken by hypercharge g ′ � = 0 and fermion masses) J = 0 J = 1 J = 2 ω 0 ( γ ′ /Z ′ ?) σ 0 (Higgs ?) f 0 (Graviton ?) I = 0 ρ ± , ρ 0 ( W ′ /Z ′ ?) π ± , π 0 (2HDM ?) a ± , a 0 I = 1 φ ±± , φ ± , φ 0 (Higgs triplet ?) t ±± , t ± , t 0 I = 2 — accounts for weakly and strongly interacting models

  11. 9/39 J. Reuter Resonances and Unitarity in Weak Boson Scattering at the LHC PSI, 22.1.2009 Model-Independent Way – Effective Field Theories � How to clearly separate effects of heavy degrees of freedom? Toy model: Two interacting scalar fields ϕ, Φ � �� � � � 2 ( ∂ϕ ) 2 − 1 2 Φ( � + M 2 )Φ − λϕ 2 Φ − . . . + J Φ+ jϕ 1 Z [ j, J ] = D [Φ] D [ ϕ ] exp i dx Low-energy effective theory ⇒ integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting Completing the square: � − 1 1 + ∂ 2 λ � Φ ′ = Φ + ϕ 2 ⇒ − → M 2 M 2 � − 1 2Φ ′ ( M 2 + ∂ 2 )Φ ′ + λ 2 1 + ∂ 2 1 2( ∂ Φ) 2 − 1 2 M 2 Φ 2 − λϕ 2 Φ = − 1 � 2 M 2 ϕ 2 ϕ 2 . M 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend