lhcb results on tetra and penta quark candidates
play

LHCb results on Tetra- and Penta-Quark candidates Tomasz Skwarnicki - PowerPoint PPT Presentation

LHCb results on Tetra- and Penta-Quark candidates Tomasz Skwarnicki Syracuse University Nov 10, 2015 at LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 2 Quark hypothesis SU(3) flavor symmetry Eightfold Way symmetry


  1. LHCb results on Tetra- and Penta-Quark candidates Tomasz Skwarnicki Syracuse University Nov 10, 2015 at

  2. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 2 Quark hypothesis – SU(3) flavor symmetry “Eightfold Way” symmetry – Gell-Mann 1961 (Y=S+A) Y=S+1/3 Y=S Q -electric charge Q +1 +1 S= Strangeness d u 0 I = ½ 0 0 Ι z Ι z -1 I = 0 s -1 -1 -1 0 1 -1 0 1 Isospin Isospin Meson octet Quark triplet J = 0 (also J=1/2 baryon octet and J=3/2 decuplet) • Quarks initially treated as mathematical abstractions

  3. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 3 “Exotic” mutiquark states conceived already at the birth of Quark Model … … Nobel Prize 1969 Murray Gell-Mann George Zweig 1929- 1937- US US

  4. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 4 Charmonium – narrow (i.e. long-lived) states Non-relativistic quantum mechanics! Linear potential is confining � � � quarks to stay inside hadrons L J = L + S s 1 − ≤ ≤ L S J L+S r n cc c L+1 P = (-1) s 2 � � L+S C = (-1) � c Coulomb potential n 2S+1 l J S=s +s 1 2 “ionization threshold” Forces between quarks ψ ’ 1974 are 10-100 times stronger Threshold for (cd)(cd) decay i.e. DD � c 1975 than between nucleons! � c ’ 1974 November revolution : 750 MeV 2002 Fine splitting h c � � � � 2005 • Quark Model and qq ⋅ L S , spin-orbit � � � � � � � � � � hypothesis for mesons � � J �� 1974 ⋅ ⋅ − ⋅ s r s r s s firmly established! 1 2 1 2 • However, near mass large Hyperfine splitting equality of light quarks � � for l= 0 states � c • s s was coincidental 1 2 1980

  5. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 5 SU(3) color symmetry • Fundamental parts of SU(3) flavor symmetry discovered by Gell-Mann & Zweig: – Quark flavor independence of strong interactions – Rules for making hadrons out of quarks – led to development of exact theory of strong interactions, QCD based on SU(3) color symmetry Breaking of color field flux tube by popping of qq pair: Strength of color interactions raises with separation of color charges → confinement of color charge → hadrons must be color neutral i.e. “white” (qq, qqq, ….)

  6. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 6 Mesons from quarks & antiquarks in QCD color octet 1 i − 2 2 color color color i 1 singlet antitriplet 2 triplet 2 1 1 i 1 2 − _ − 3 2 2 2 6 3 8 = ⊗ ⊕ 1 3 1 1 i 1 1 1 1 3 − 3 2 6 6 2 2 quark antiquark attractive color force i 1 − q 2 q 2 (qq) meson i 1 e.g. K + + + + 2 2 _ Color flux tube s repulsive color force stretched between quark and antiquark quarks will pull apart in any _ with attractive octet configuration u potential gluons happen to belong to the color octet

  7. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 7 (Colored) diquarks in QCD color (antisymmetric) sextet color (symmetric) antitriplet 1 2 color color 1 1 1 triplet triplet 2 2 2 1 _ 1 − − 1 1 2 2 3 = ⊗ 1 2 2 ⊕ 6 1 3 3 2 1 2 1 2 − 2 quark quark 1 1 1 q q repulsive color force attractive color force _ quarks will pull apart in any (half as strong as in the meson) sextet configuration (qq) diquark Color flux tube _ stretched between Not a particle, just a the quarks and s u building block in extending to other QCD color partners

  8. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 8 Baryons from quarks and diquarks color singlet color color antitriplet 1 triplet 6 1 1 1 − 2 2 6 1 _ 1 − − 2 2 = ⊗ 3 ⊕ ... 1 1 1 1 3 2 6 6 1 1 1 − − − 6 6 2 Color flux tube stretched between attractive color force the diquark and the quark (q(qq)) baryon third quark attractive color force q (qq) diquark s u e.g. Λ Λ Λ Λ d

  9. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 9 Baryons directly from 3 quarks color singlet color color color 1 triplet triplet triplet 3 = ⊗ ⊗ ⊕ 1 ... 3 3 3 1 1 3 3 q q q Color flux tube in QCD gluons can attractive color force stretched between couple to each other three quarks (qqq) baryon Different forms of quark configurations in a baryon can s u coexist. Relative importance of diaquarks can depend on quark flavors. d

  10. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 10 Tetraquarks from diquarks and diantiquarks color color color singlet antitriplet triplet 1 1 2 2 1 _ 1 − − 2 = 2 1 3 ⊗ ⊕ ... 1 1 2 2 1 1 − − 2 2 3 1 1 attractive color force 2 2 1 Color flux tube 1 − − stretched between 2 ((qq)(qq)) tetraquark 2 the diquark and _ diantiquark _ _ s u attractive color force attractive color force (qq) diquark (qq) diantiquark s d

  11. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 11 Pentaquark directly from two diquarks and antiquark color color color color singlet antitriplet antitriplet antitriplet 1 1 1 − 1 − − − 2 2 2 2 1 _ 1 _ 1 1 _ 2 3 2 2 3 2 = ⊗ 3 ⊗ 1 1 − − 2 2 1 1 2 2 q antiquark attractive color force attractive color force attractive color force Color flux tube s u stretched between (qq) diquark (qq) diquark the diquarks and _ antiquark Different forms of quark configurations in a pentaquark s can coexist. Modeling of pentaquarks is complicated. d u ((qq)(qq)q) pentaquark

  12. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 12 Hexaquark directly from three diquarks color color color color singlet antitriplet antitriplet antitriplet 1 1 1 1 − − − − 2 2 2 2 1 1 1 _ 1 _ 1 1 _ 2 2 2 2 3 2 3 2 3 1 1 1 − − − ⊗ 2 2 ⊗ = 2 1 1 1 2 2 2 attractive color force attractive attractive attractive color force color force color force d u (qq) diquark (qq) diquark (qq) diquark d u s u ((qq)(qq)(qq)) hexaquark (dibaryon)

  13. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 13 Tightly and loosely bound multiquark states ((q(sq))(qq)) ((sq)(sq)) ((q(sq))(q(sq))) (((sq)(sq))(qq)) pentaquark tetraquark hexaquark hexaquark _ _ _ _ u s u d s u u s _ _ d u d d d d s s u s u s u _ dihyperon Any of these states would be predicted by Jaffe to be stable considered an “exotic” hadron. PRL 38,195(1977) Λ _ _ Λ d s s u _ π + s _ K − _ u d u u d Λ Λ Λ π π π π K + d s d _ s _ s d _ u s u u u Bayronium (q(sq)) (qq)) (q(sq)) (q(sq)) (q(sq)) (q(sq)) (sq) (sq) Λπ + molecule K + K − molecule ΛΛ molecule ΛΛ molecule

  14. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 14 Tightly versus loosely bound multiquark systems p (q(qq)) (q(qq)) (((qq)(qq))(qq)) molecule d s hexaquark (dibaryon) e.g. deuteron u These quarks d u pop-out of gluon π 0 The same d u field, later annihilate quark content _ d u d s d Quite different d u spectroscopy n • Rich excitation spectrum, in Molecular forces can be described principle, possible: as exchange of a pion – n, l, S – hundreds of MeV in energy between Difficult to get more than different excitations one state ( n=1, l =0 ). � = � + � � values possible high � – M = M 1 +M 2 – (a few MeV) Such structures may be extremely unstable (wide). J P = (J 1 ± J 2 ) P1*P2 ⊗ No firm input from lattice QCD (yet) which, if any, multiquark structures form Γ ~ max( Γ 1 , Γ 2 ) well defined bound states.

  15. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 15 Two waves of past pentaquark claims (with s) Last mention of 2 nd pentaquark wave: PDG 2006 e.g. PDG 1976 Found/debunked by looking for “bumps” in mass spectra … Last mention of baryonic Z*’s PDG 1992 …

  16. LHCb Tetra- and Penta-quarks, T. Skwarnicki SLAC, Nov 2015 16 LHCb: first dedicated b,c detector at hadronic collider Advantages over e + e - LHCb • CMS B-factories (Belle, RICH2 BaBar): RICH1 – ~1000x larger b VELO production rate – produce b- baryons at the same time as B- � mesons – long visible lifetime of b-hadrons (no backgrounds from the other b-hadron) • Advantages over (B) (B) µ − ATLAS, CMS, CDF, VELO D0: p – RICH detectors for ( π + ) π /K/p discrimination µ + (smaller K - backgrounds) – Small event size allows large trigger bandwidth (up to 5 kHz in Run I); all devoted to flavor physics The LHCb detector described in JINST 3 (2008) S08005

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend