inclusive hadronic distributions in jets in the vacuum
play

Inclusive hadronic distributions in jets in the vacuum and in the - PowerPoint PPT Presentation

Inclusive hadronic distributions in jets in the vacuum and in the medium Redamy Perez Ramos Universitat de Val` encia, IFIC-CSIC, Spain Rencontres de Physique des Particules 2010, Lyon-France Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP


  1. Inclusive hadronic distributions in jets in the vacuum and in the medium Redamy Perez Ramos Universitat de Val` encia, IFIC-CSIC, Spain Rencontres de Physique des Particules 2010, Lyon-France Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 1 / 15

  2. Outline Jets in perturbative Quantum Chromodynamics: production of jets Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 2 / 15

  3. Outline Jets in perturbative Quantum Chromodynamics: production of jets some resummation approaches in pQCD: MLLA and DGLAP evolution equations Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 2 / 15

  4. Outline Jets in perturbative Quantum Chromodynamics: production of jets some resummation approaches in pQCD: MLLA and DGLAP evolution equations Results Single inclusive differential one-particle distribution as a function of k ⊥ d σ d ln k ⊥ in MLLA and Next-to-MLLA; comparison with CDF p-p data Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 2 / 15

  5. Outline Jets in perturbative Quantum Chromodynamics: production of jets some resummation approaches in pQCD: MLLA and DGLAP evolution equations Results Single inclusive differential one-particle distribution as a function of k ⊥ d σ d ln k ⊥ in MLLA and Next-to-MLLA; comparison with CDF p-p data Extension of some perturbative techniques to the phenomenology of heavy-ion collisions at RHIC and LHC, Borghini-Wiedemann model (Charged hadronic multiplicities in jets, gluon to quark multiplicity ratio, FFs and collimation.. . ) Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 2 / 15

  6. Outline Jets in perturbative Quantum Chromodynamics: production of jets some resummation approaches in pQCD: MLLA and DGLAP evolution equations Results Single inclusive differential one-particle distribution as a function of k ⊥ d σ d ln k ⊥ in MLLA and Next-to-MLLA; comparison with CDF p-p data Extension of some perturbative techniques to the phenomenology of heavy-ion collisions at RHIC and LHC, Borghini-Wiedemann model (Charged hadronic multiplicities in jets, gluon to quark multiplicity ratio, FFs and collimation.. . ) Conclusions Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 2 / 15

  7. Production of jets Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 3 / 15

  8. Production of jets Partonic cascade: traited in pQCD planar gauge: tree amplitudes ⇒ parton shower picture (probabilistic interpretation) Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 3 / 15

  9. Production of jets Partonic cascade: traited in pQCD planar gauge: tree amplitudes ⇒ parton shower picture (probabilistic interpretation) Hadronization: advocates for Local Parton Hadron Duality Hypothesis (LPHD) partonic distributions ≃ hadronic distributions: factor K ch “limiting spectrum:” Q 0 ∼ Λ QCD Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 3 / 15

  10. Angular Ordering Θ Θ Θ 1 2 3 Θ 1 > > Θ Θ 2 3 necessary condition to the construction of QCD evolution equations ⇔ to the k ⊥ -ordering of Dokshitzer-Gribov-Lipatov-Altereli-Parisi (DGLAP) evolution equations in the DIS Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 4 / 15

  11. Resummation schemes DLA: α s log(1 / x )log Θ ( α s log 2 ∼ 1 ⇒ log ∼ α − 1 / 2 ): resummation of s soft and collinear gluons main ingredient to the estimation of inclusive observables in jets neglects the energy balance Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 5 / 15

  12. Resummation schemes DLA: α s log(1 / x )log Θ ( α s log 2 ∼ 1 ⇒ log ∼ α − 1 / 2 ): resummation of s soft and collinear gluons main ingredient to the estimation of inclusive observables in jets neglects the energy balance Single Logs (SL): α s log Θ collinear splittings (i.e. DGLAP FO approach or LLA of FFs, PDFs at large x ∼ 1 (DIS). . . ) s log n Θ” running of α s ( k ⊥ → Q 0 ) . . . “ ⇒ β × α n Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 5 / 15

  13. Resummation schemes DLA: α s log(1 / x )log Θ ( α s log 2 ∼ 1 ⇒ log ∼ α − 1 / 2 ): resummation of s soft and collinear gluons main ingredient to the estimation of inclusive observables in jets neglects the energy balance Single Logs (SL): α s log Θ collinear splittings (i.e. DGLAP FO approach or LLA of FFs, PDFs at large x ∼ 1 (DIS). . . ) s log n Θ” running of α s ( k ⊥ → Q 0 ) . . . “ ⇒ β × α n MLLA: α s loglog + α s log : the SL corrections to DLA � �� � � �� � O ( √ α s ) O (1) “partially restore” the energy balance take into account the running of α s ( k ⊥ ) Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 5 / 15

  14. Resummation schemes DLA: α s log(1 / x )log Θ ( α s log 2 ∼ 1 ⇒ log ∼ α − 1 / 2 ): resummation of s soft and collinear gluons main ingredient to the estimation of inclusive observables in jets neglects the energy balance Single Logs (SL): α s log Θ collinear splittings (i.e. DGLAP FO approach or LLA of FFs, PDFs at large x ∼ 1 (DIS). . . ) s log n Θ” running of α s ( k ⊥ → Q 0 ) . . . “ ⇒ β × α n MLLA: α s loglog + α s log : the SL corrections to DLA � �� � � �� � O ( √ α s ) O (1) “partially restore” the energy balance take into account the running of α s ( k ⊥ ) + α s loglog − 1 Next-to-MLLA: α s loglog + α s log � �� � � �� � � �� � O ( √ α s ) O (1) O ( α s ) improve the restoration of the energie balance and allow to increase the range in “ x ” ( k ⊥ ≈ xE jet Θ) Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 5 / 15

  15. For instance: ((N)MLLA ev. eq., gluon and quark jets) � ℓ � y � � 0 ( ℓ ′ + y ′ ) − ( a 1 + a 2 ψ ℓ ( ℓ ′ , y ′ )) δ ( ℓ ′ − ℓ ) D h ˜ d ℓ ′ dy ′ γ 2 g ( ℓ, y ) = δ ( ℓ ) + 1 ���� 0 0 � �� � DLA gluon jet × ˜ g ( ℓ ′ , y ′ ) D h = δ ( ℓ ) + C F ˜ a 2 ψ ℓ ) . . . ˜ D h D h g ( ℓ ′ , y ′ ) , q ( ℓ, y ) . . . (˜ a 1 , ˜ ℓ = ln(1 / x ) , y = ln( k ⊥ / Λ) N c � �� � � �� � � �� � infrared collinear quark jet Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 6 / 15

  16. For instance: ((N)MLLA ev. eq., gluon and quark jets) � ℓ � y � � 0 ( ℓ ′ + y ′ ) − ( a 1 + a 2 ψ ℓ ( ℓ ′ , y ′ )) δ ( ℓ ′ − ℓ ) D h ˜ d ℓ ′ dy ′ γ 2 g ( ℓ, y ) = δ ( ℓ ) + 1 ���� 0 0 � �� � DLA gluon jet × ˜ g ( ℓ ′ , y ′ ) D h = δ ( ℓ ) + C F ˜ a 2 ψ ℓ ) . . . ˜ D h D h g ( ℓ ′ , y ′ ) , q ( ℓ, y ) . . . (˜ a 1 , ˜ ℓ = ln(1 / x ) , y = ln( k ⊥ / Λ) N c � �� � � �� � � �� � infrared collinear quark jet Logic of Low-Barnet-Kroll theorem: DLA (LO) term: ∝ O (1) hard corrections: ∝ a 1 ∼ O ( √ α s ) & ∝ a 2 ( ψ ℓ = ∂ D h ∂ℓ ) ∼ O ( α s ) Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 6 / 15

  17. For instance: ((N)MLLA ev. eq., gluon and quark jets) � ℓ � y � � 0 ( ℓ ′ + y ′ ) − ( a 1 + a 2 ψ ℓ ( ℓ ′ , y ′ )) δ ( ℓ ′ − ℓ ) D h ˜ d ℓ ′ dy ′ γ 2 g ( ℓ, y ) = δ ( ℓ ) + 1 ���� 0 0 � �� � DLA gluon jet × ˜ g ( ℓ ′ , y ′ ) D h = δ ( ℓ ) + C F ˜ a 2 ψ ℓ ) . . . ˜ D h D h g ( ℓ ′ , y ′ ) , q ( ℓ, y ) . . . (˜ a 1 , ˜ ℓ = ln(1 / x ) , y = ln( k ⊥ / Λ) N c � �� � � �� � � �� � infrared collinear quark jet Logic of Low-Barnet-Kroll theorem: DLA (LO) term: ∝ O (1) hard corrections: ∝ a 1 ∼ O ( √ α s ) & ∝ a 2 ( ψ ℓ = ∂ D h ∂ℓ ) ∼ O ( α s ) � � σ 0 � � σ 1 + σ 2 e − σ 3 s �� d ω d ν (2 π i ) 2 e ωℓ e ν y � ∞ ˜ ω ( ν + s ) D h d s ν g = ( ℓ + y ) 0 ν + s ( ω + s ) ν ν + s 1 σ 1 = a 1 σ 2 = − a 2 σ 3 = − a 2 σ 0 = β 0 ( ω − ν ) , β 0 , β 0 ( ω − ν ) , β 0 + λ � ˜ √ α s + r 2 α s � ˜ q ≃ C F D h D h 1 + r 1 g N c Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 6 / 15

  18. Reminder: Dokshitzer et al. D h ≡ K ch × 1 d σ d ln (1 / x ) at Z 0 peak, Q = 91 . 2 Hump-backed plateau: ˜ σ GeV Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 7 / 15

  19. Reminder: Dokshitzer et al. D h ≡ K ch × 1 d σ d ln (1 / x ) at Z 0 peak, Q = 91 . 2 Hump-backed plateau: ˜ σ GeV 7 MLLA limiting spectrum OPAL data 6 5 4 D 3 2 1 0 0 1 2 3 4 5 6 ln(1/x) Q ≫ Q 0 ∼ Λ QCD ≈ m ( π ± ) = 230 MeV, γ 0 ≈ 0 . 5, good agreement though! Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 7 / 15

  20. d σ Inclusive k ⊥ -one particle distribution d ln k ⊥ d σ Inclusive one particle d ln k ⊥ : obtained from the correlation between one particle and the energy flux (jet axis) Angle d’ouverture du jet Angle de production de h (Θ < Θ ) 0 h k = xE Θ > Q0 Θ0 xE A Θ h DA 0 D A A uE A0 E (Jet Axis) Collision Etat vituel (u~1) Parton initiant le jet Redamy Perez Ramos (IFIC-CSIC) Jets in QCD RPP 2010 in Lyon, France 8 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend