improved fluid models for runaway generation and decay
play

Improved fluid models for runaway generation and decay Ola Embr - PowerPoint PPT Presentation

Improved fluid models for runaway generation and decay Ola Embr eus ul Adam Stahl, Linnea Hesslow, T unde F op Chalmers University of Technology, Gothenburg, Sweden Ola Embr eus | embreus@chalmers.se 1/19 CHALMERS The


  1. Improved fluid models for runaway generation and decay Ola Embr´ eus ul¨ Adam Stahl, Linnea Hesslow, T¨ unde F¨ op Chalmers University of Technology, Gothenburg, Sweden Ola Embr´ eus | embreus@chalmers.se 1/19

  2. CHALMERS The runaway fluid j RE = − en RE � v � � � 1 � v � � = d p v � f RE . n RE The runaway current evolution is given by d j RE � Γ( E , t ) u ( E , t ) + d � = − ecn RE d t u ( E , t ) , d t 1 d n RE Γ( E , t ) ≡ d t , n RE u ( E , t ) ≡ � v � � / c . Ola Embr´ eus | embreus@chalmers.se 2/19

  3. CHALMERS The runaway fluid Kinetic simulations unnecessary whenever Γ( E , t ) = Γ( E ( t )) u ( E , t ) = u ( E ( t )) , i.e. when the system is in momentaneous steady-state. 1 d j RE 1 ∂ u d E = Γ( E ) + u ( E ) ∂ E j RE d t d t Ola Embr´ eus | embreus@chalmers.se 3/19

  4. CHALMERS The runaway fluid Requires slowly varying parameters → May be the case during the current quench τ c = 4 πε 2 0 m 2 e c 3 = m e c Collision time of relativistic electron : ln Λ n e e 4 eE c ∂ j RE /∂ t ≈ j RE ˆ j RE L Decay time of current : τ decay ∼ E c τ decay ∼ e µ 0 I RE I RE 2 π m e c ≈ 8 . 5 kA ≫ 1 τ c Ola Embr´ eus | embreus@chalmers.se 4/19

  5. CHALMERS Example: Let’s compare time-dependent vs steady state growth rates � � 2 − 0 . 8 t E ( t ) = E c t ∆ E Ola Embr´ eus | embreus@chalmers.se 5/19

  6. CHALMERS � � 2 − 0 . 8 t E ( t ) = E c t ∆ E × 10 − 3 5 0.85 0 � v � � /c τ c Γ -5 0.8 -10 t ∆ E = ∞ t ∆ E = ∞ -15 0.75 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2 E/E c E/E c Ola Embr´ eus | embreus@chalmers.se 5/19

  7. CHALMERS Self-similar evolution occurs both for growth and decay: 10 − 5 10 − 5 E = 1 . 2 E c E = 2 E c 10 − 10 d n RE / d E k d n RE / d E k 10 − 7 10 − 15 t = 0 t = 0 t = 300 τ c 10 − 20 t = 100 τ c 10 − 9 t = 600 τ c t = 200 τ c t = 900 τ c t = 300 τ c 10 − 25 0 20 40 60 80 0 20 40 60 80 Kinetic energy E k [MeV] Kinetic energy E k [MeV] Ola Embr´ eus | embreus@chalmers.se 6/19

  8. CHALMERS � � 2 − 0 . 8 t E ( t ) = E c t ∆ E × 10 − 3 5 0.85 0 � v � � /c τ c Γ -5 t ∆ E = 10 τ c t ∆ E = 10 τ c 0.8 = 100 τ c = 100 τ c -10 = 1000 τ c = 1000 τ c = ∞ = ∞ -15 0.75 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2 E/E c E/E c Ola Embr´ eus | embreus@chalmers.se 7/19

  9. When quasi-steady state is valid, the mission of kinetic theory is only to determine Γ( E , ... ) (and to a lesser extent � v � � ) How do we determine Γ as accurately as possible?

  10. CHALMERS Avalanche generation To describe knock-on collisions we add a (simplified) Boltzmann operator: d f e d t = C FP { f e } + C boltz { f e } , � � ∂σ ab C boltz { f a , f b } ( p ) = d p 1 d p 2 ∂ p v rel f a ( p 1 ) f b ( p 2 ) � d p ′ v rel σ ab ( p , p ′ ) f b ( p ′ ) − f a ( p ) Generally we can linearize ( n RE ≪ n e ) C boltz { f e , f e } ≈ C boltz { f e , f e 0 } + C boltz { f e 0 , f e } . � �� � � �� � test-particle field-particle Ola Embr´ eus | embreus@chalmers.se 9/19

  11. CHALMERS Avalanche generation The two most established knock-on models today: C knock-on = C boltz { n e δ ( p ) , f e } (only field-particle term) 1 Rosenbluth-Putvinski: f e ( p ) = n RE lim p 2 δ ( p − p 0 ) δ ( cos θ − 1 ) p 0 →∞ Chiu-Harvey: f e ( p ) = F ( p ) δ ( cos θ − 1 ) � � � 1 F ( p ) = − 1 f e ( p ) d ( cos θ ) [Rosenbluth, Putvinski NF 1997; Chiu, Rosenbluth, Harvey NF 1998] Ola Embr´ eus | embreus@chalmers.se 10/19

  12. CHALMERS Avalanche generation So how do these operators behave? Ola Embr´ eus | embreus@chalmers.se 11/19

  13. CHALMERS Avalanche generation Both models have limitations: • Double counting collisions • Non-conservation of momentum and energy – Rosenbluth-Putvinski even creates infinite energy and momentum! • Chiu-Harvey model ignores pitch-angle distribution • Arbitrary cut-off affecting solutions Ola Embr´ eus | embreus@chalmers.se 12/19

  14. CHALMERS Avalanche generation We solved this, by • Accounting for full f e ( p ) • Including the test-particle term [restores conservation laws] • Modify ln Λ in Fokker-Planck operator [avoids double counting] Ola Embr´ eus | embreus@chalmers.se 13/19

  15. CHALMERS Avalanche generation Ola Embr´ eus | embreus@chalmers.se 14/19

  16. CHALMERS Avalanche generation 0.045 Full Boltzmann We can now revisit a classical Field-particle Rosenbluth-Putvinski calculation [R-P , NF 1998] : E c − 1) R-P theory The steady state avalanche 0.04 growth rate Γ / ( E 1 d n RE Γ = n RE d t 0.035 0 10 20 30 E E c − 1 Ola Embr´ eus | embreus@chalmers.se 15/19

  17. CHALMERS Avalanche generation in a near-threshold electric field An interesting situation occurs when E ∼ E c , as radiation losses become important. [P . Aleynikov and B. N. Breizman, PRL 114 , 155001 (2015)] Ola Embr´ eus | embreus@chalmers.se 16/19

  18. CHALMERS Near-threshold electric field Approximate Γ calculated from the avalanche cross-section � γ max ∂σ Γ( E ) ≈ v ∂γ d γ. γ min Negative growth for small E : Reverse knock-ons predicted! [P . Aleynikov and B. N. Breizman, PRL 114 , 155001 (2015)] Ola Embr´ eus | embreus@chalmers.se 17/19

  19. CHALMERS Near-threshold electric field 0.03 No avalanche • Significant reverse knock-on Full Boltzmann Aleynikov-Breizman theory however not observed in 0.02 Γ [arb. units] kinetic simulations 0.01 • Runaway decay is described mainly by Fokker-Planck 0 dynamics when Γ � 0. -0.01 1.5 2 2.5 E/E c Ola Embr´ eus | embreus@chalmers.se 18/19

  20. CHALMERS Summary • Runaway fluids — Strictly valid when background variations slow (for example current quench) — Accuracy then only limited by the kinetics used to find Γ( E , ... ) — Runaway dissipation can be described in the fluid picture • Avalanche runaway modelling — Conservative knock-on operator from Boltzmann — Formally eliminates double counting collisions, and describes reverse knock-on Runaway kinetic theory is here to stay. Ola Embr´ eus | embreus@chalmers.se 19/19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend