impact of drag reduction control on energy box of a fully
play

Impact of Drag Reduction Control on Energy Box of a Fully Developed - PowerPoint PPT Presentation

Nov. 20, 2017 APS DFD@Denver Impact of Drag Reduction Control on Energy Box of a Fully Developed T urbulent Channel Flow Yosuke Hasegawa Instjtute of Industrial Science, The University of Tokyo, Japan Davide Gattj , Bettjna Frohnapfel


  1. Nov. 20, 2017 APS DFD@Denver Impact of Drag Reduction Control on Energy Box of a Fully Developed T urbulent Channel Flow Yosuke Hasegawa Instjtute of Industrial Science, The University of Tokyo, Japan Davide Gattj , Bettjna Frohnapfel Karlsruhe Instjtute of Technology, Germany Andrea Cimarelli Universita Plitecnica delle Marche, Italy Maurizio Quadrio Politecnico di Milano, Italy

  2. 2 Back ckgr ground nd • A Fully Developed Channel Flow  Essentjal physics of near-wall turbulence  Flow control ( drag reductjon , mixing enhancement, etc.) • Global Energy Budget Total kinetjc energy = Mean Turbulent 1/24

  3. Back ckgr ground nd • A Fully Developed Channel Flow  Essentjal physics of near-wall turbulence  Flow control ( drag reductjon , mixing enhancement, etc.) • Global Energy Budget Total kinetjc energy = Mean Turbulent Energy Box Direct dissipatjon (diss. of mean fjeld) Turbulent fjeld Mean fjeld 2 𝑒 ´ 𝑣 𝜚 = 1 𝑆𝑓 ( 𝑒𝑧 ) Turbulent Pumping Productjon Power Turbulent dissipatjon 2 ´ 𝑒𝑣 ′ 𝑗 𝑒𝑣 ′ 𝑗 𝜁 = 1 𝑆𝑓 ( 𝑒 𝑦 𝑘 ) 𝑒 𝑦 𝑘 Turbulent dissipatjon Direct dissipatjon 2/24

  4. Dir irect ect and nd Tur urbu bulent lent Dis issipa ipatio ion in in Unco Uncont ntrolle le d Flow Turbulent dissipatjon 𝑺𝒇 𝝊 𝟔𝟏𝟏 Direct dissipatjon 3/24

  5. Objec jectives ves • Drag reductjon control is somewhat similar to make the “efgec tjve” Re lower  Then, the direct dissipatjon increases, while the turbulent dissipatjo n decreases ? • Ultjmate control: complete relaminarizatjon  All input energy should be dissipated by the direct dissipatjon only. Questjons  Is there an unique relatjonship between the changes in direct/turbulent dissipatjon and a drag reductjon efgect ? 4/24

  6. Flow ow Cond nditions ns Flow Rate: Pressure Gradient: Pump X Pumping Power: 5/24

  7. Flow ow Cond nditions ns Flow Rate: Pressure Gradient: Pump X Pumping Power: Flow Rate: Pressure Gradient: Pumping Power: Constant Flow Rate Constant Flow Rate (CFR) (CFR) Constant Constant Constant Pressure Constant Pressure Constant Constant Gradient (CPG) Gradient (CPG) 6/24

  8. Ener ergy Bo Box Under der CP CPG Ricco et al. JFM (2011) Direct Spanwise Wall Oscillatjon Control dissipatjon of U Pumping Mean U Power Turbulence Turbulent productjon Turbulent dissipatjon Control input Mean W Direct Pumping power input changes due to dissipatjon of W the applied control…. 7/24

  9. Flow ow Cond nditions ns Flow Rate: Pressure Gradient: Pump X Pumping Power: Flow Rate: Pressure Gradient: Pumping Power: Constant Flow Rate Constant Flow Rate Constant Constant (CFR) (CFR) Constant Pressure Constant Pressure Constant Constant Gradient (CPG) Gradient (CPG) Constant Power Input Constant Power Input Constant Constant (CPI) (CPI) 8/24

  10. Co Conce cept pt of of Con onst stan ant Pow ower er Inpu put (C (CPI PI) (Frohnapfel et al. JFM 2012, Hasegawa et al. JFM 2014) Flow Rate: Pumping Power : Control Pump Input : X Dissipatjon • Fractjon of Control Power Input • Total Power Input 𝛅 = Π 𝑑 / Π t 𝚸 𝐮 = 𝑑𝑝𝑜𝑡𝑢 . ∗ ∗ = Π 𝑞 ∗ + Π 𝑑 ∗ ∗ • Power-based Reynolds Number • Max. Achievable Flow Rate ∗ 𝜀 ∗ 𝑆𝑓 Π = 𝑽 𝜬 𝚸 𝐮 ∗ 𝜀 ∗ = √ ∗ 𝑉 Π 𝜉 ∗ 3 𝜈 ∗ 9/24

  11. Exampl Exa ple Flow Rate: Pumping Power : - (CPG) Pump Control - (CFR) X Input : • Control Schemes - Oppositjon Control (Choi et al. JFM 1998) - Spanwise Wall Oscillatjon (Jung et al. PoF 1992) / Reference (NC) Reference (NC) 1.0 1.0 0.4887 0.4887 0 0 10/24

  12. Exa Exampl ple Flow Rate: Pumping Power : - (CPG) Pump Control - (CFR) X Input : • Control Schemes - Oppositjon Control (Choi et al. JFM 1998) - Spanwise Wall Oscillatjon (Jung et al. PoF 1992) / Reference (NC) Reference (NC) 1.0 1.0 0.4887 0.4887 0 0 Wall Oscillatjon Wall Oscillatjon 1.028 1.028 0.5026 0.5026 0.0978 0.0978 Oppositjon Control Oppositjon Control 1.094 1.094 0.5345 0.5345 0.0035 0.0035 11/24

  13. En Ener ergy gy Bo Box of Unco ncontr ntrolle lled Fl ow 12/24

  14. En Ener ergy Box unde der Op Oppo posi siti tion Co Contr trol Direct dissipatjon increases Turbulent dissipatjon decreases 13/24

  15. Ene nergy Box und nder er Wall all Os Osci cilla llatio tion Co Cont ntrol Direct dissipatjon decreases Turbulent dissipatjon increases 14/24

  16. Ene nergy Box und nder er Wall all Os Osci cilla llatio tion Co Cont ntrol Direct dissipatjon decreases Opposite trends in the changes of direct/turbulent dissipatjon for drag-reduced fmows Turbulent dissipatjon increases Can we explain it ? 15/24

  17. Fl Flow Rate te Und nder er CP CPI • FIK Identjty (Fukagata et al. PoF 2002) 𝑽 𝒄 = 𝜷 𝑺𝒇 𝚸 𝟑 { − 𝟐 + √ 𝟑 } 𝟐 + 𝟓 ( 𝟐 − 𝜹 ) ( 𝜷 𝑺𝒇 𝚸 ) (Hasegawa et al. JFM 2014) The fmow rate is determined by and only. • Fractjon of Control Power Input Two Limitjng Cases 𝛅 = Π 𝑑 / Π t ∗ ∗ 𝜷 → 𝟏 { 𝜹 → 𝟏 𝑽 𝒄 → 𝟐 • Weighted Reynolds Shear Stress 𝟐 ′ 𝒘 ′ ) 𝒆𝒛 ´ ( 𝟐 − 𝒛 ) ( 𝜷 = ∫ − 𝒗 𝜷 →∞ 𝑽 𝒄 → 𝟏 𝟏 16/24

  18. Ener nergy Flu lux Unde der CP CPI • Triple Decompositjon 𝑣 = 𝑉 + 𝑣 ′ 17/24

  19. Ener nergy Flu lux Unde der CP CPI : parabolic profjle with the same fmow rate : deviatjon from parabola • Triple Decompositjon 𝑣 = 𝑉 + 𝑣 ′ = 𝑉 𝑚𝑏𝑛 + Δ 𝑉 + 𝑣 ′ (Echhardt et al., JFM 2007) 𝑽 𝑉 𝑚𝑏𝑛 Δ 𝑉 18/24

  20. Ener nergy Flu lux Unde der CP CPI • Productjon 1 1 ′ 𝑤 ′ 𝑒𝑉 𝑚𝑏𝑛 ′ 𝑤 ′ 𝑒 Δ 𝑉 ´ ´ 𝑄 = 𝑄 𝑚𝑏𝑛 + 𝑄 Δ = ∫ 𝑣 𝑒𝑧 + ∫ 𝑣 𝑒𝑧 − − 𝑒𝑧 𝑒𝑧 0 0 • Direct Dissipatjon 1 1 2 2 𝑒𝑉 𝑒 1 1 { 𝑒𝑧 ( 𝑉 𝑚𝑏𝑛 + Δ 𝑉 ) } ( 𝑒𝑧 ) 𝜚 = 𝑒𝑧 = 𝑒𝑧 𝑆𝑓 Π ∫ 𝑆𝑓 Π ∫ 0 0 1 2 𝑒𝑉 𝑚𝑏𝑛 𝑒𝑉 𝑚𝑏𝑛 2 { ( 𝑒𝑧 ) } 𝑒𝑧 𝑒 Δ 𝑉 𝑒 Δ 𝑉 1 𝑒𝑧 ) + ( 𝑒𝑧 ) ( + ( 𝑒𝑧 ) 𝑆𝑓 Π ∫ ¿ 0 ¿ 𝜚 𝑚𝑏𝑛 + 𝜚 Δ Only true in the present triple decompositjon In additjon, it can be shown that 19/24

  21. Mod odifj ifjed ed En Energy Box 20/24

  22. Mod Modifje fjed Energy Box • Direct Dissipatjon () 2 𝑆𝑓 Π { ( 𝜷 𝑆𝑓 Π ) 2 ) + ( 1 − 𝛿 ) } 1 + 4 ( 1 − 𝛿 ) 3 ( 1 − √ 𝜚 𝑚𝑏𝑛 = 2 𝜷 𝑆𝑓 Π 𝜚 Δ = 𝑆𝑓 Π ( 𝜸 − 3 𝜷 2 ) • Turbulent Dissipatjon 2 2 𝑆𝑓 Π { ( 𝜷 𝑆𝑓 Π ) + 𝛿 } 2 ) − 𝜸 𝑆𝑓 𝛲 1 + 4 ( 1 − 𝛿 ) 3 ( 1 + √ 𝜁 = 2 3 𝜷 𝑆𝑓 Π The following two quantjtjes dictates all the fmuxes in Energy Box !!! 𝟐 𝟐 𝟑 𝒆𝒛 ′ 𝒘 ′ ) 𝒆𝒛 ´ ´ − 𝒗 ′ 𝒘 ′ ) ( 𝟐 − 𝒛 ) ( ( 𝜷 = ∫ − 𝒗 𝜸 = ∫ 𝟏 𝟏 21/24

  23. Con onclusions ns • Constant Power Input (CPI) is benefjcial to analyze global energy • budgets of turbulent fmows w/wo control • There exists no unique relatjonship between the changes in direc t/turbulent dissipatjon and DR efgect • DR efgect under CPI is determined only by : the integral of weight ed RSS • Triple decompositjon of the velocity fjeld reveals that global ener gy fmuxes are expressed by two quantjtjes: and . 𝟐 𝟐 𝟑 𝒆𝒛 ′ 𝒘 ′ ) 𝒆𝒛 ´ ´ − 𝒗 ′ 𝒘 ′ ) ( 𝟐 − 𝒛 ) ( ( 𝜷 = ∫ − 𝒗 𝜸 = ∫ 𝟏 𝟏 • Total dissipatjon: • “Wind” dissipatjon can be considered to be a loss from energetjc viewpoint.  A target quantjty to be minimized 23/24

  24. Th Thank you for yo your kin ind atten tten tio tion Questions ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend