ilgad a p in p position sentitive detector with low
play

ILGAD - A p-in-p Position-Sentitive-Detector with low signal - PowerPoint PPT Presentation

ILGAD - A p-in-p Position-Sentitive-Detector with low signal amplification M. Fernndez, J. Gonzlez, R. Jaramillo, D. Moya, A.Ruiz, I. Vila. Instituto de Fsica de Cantabria(CSIC-UC) M. Baselga, S. Hidalgo, A. Merlos, V. Greco, G.


  1. ILGAD - A p-in-p Position-Sentitive-Detector with low signal amplification M. Fernández, J. González, R. Jaramillo, D. Moya, A.Ruiz, I. Vila. Instituto de Física de Cantabria(CSIC-UC) M. Baselga, S. Hidalgo, A. Merlos, V. Greco, G. Pellegrini, D. Quirion. Centro Nacional de Microelectrónica at Barcelona (CSIC) F.R. Palomo Universidad de Sevilla

  2. Work supported by RD50 - Radiation hard semiconductor devices for very high luminosity colliders. http://rd50.web.cern.ch/ RD50 participating Institutes in this project: CNM-Barcelona, G. Pellegrini, Giulio.Pellegrini@cnm-imb.csic.es Liverpool University, Gianluigi Casse, gcasse@hep.ph.liv.ac.uk UC Santa Cruz, Hartmut Sadrozinki, hartmut@ucsc.edu IFCA Santander, Ivan Vila, ivan.vila@csic.es University of Glasgow, Richard Bates, Richard.bates@glasgow.ac.uk INFN Florence, Mara Bruzzi, mara.bruzzi@unifi.it CERN, M. Moll, Michael.Moll@cern.ch Jozef Stefan Institute , G. Kramberger, Gregor.Kramberger@ijs.si IFAE Barcelona, S. Grinstein, sgrinstein@ifae.es INFN Torino, N. Cartiglia <cartiglia@to.infn.it> 2 I. Vila - ALCW 2015 April 20th, Tsukuba, Japan.

  3. Outline — Motivations for the R&D. — Reach-through APD layout — Low Gain Avalanche Detectors: PADs and Microstrips. — Experimental characterization of LGADs — Inverse-LGAD: Layout and TCAD simulation. — Summary 3 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  4. R&D Motivation — In a ILC environment with low hadron fluences and no active cooling, the material budget dominated by sensor’s material in the detector fiducial volume. — Implementing a small signal gain in microstrip sensors can reduce the thickness of the sensors without reducing the signal amplitude keeping the same SNR ratio. — A relatively small signal gain (5-10) needed to allow the use of standard readout front-end without signal saturation. 4 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  5. Enabling technology: Reach-Trough Avalanche Photo-Diodes (1) — RT-APD , lightly doped p-substrate with two- diffusions to created a local high-field region (impact ionization  signal multiplication) — Low Gain Avalanche Detector ( LGAD ): the gain p- layer engineered (doping and depth) to achieve low signal gain. 5 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  6. LGADs: Technical challenges Electric Field @ 400 V N + P π Core Region  Uniform electric field, high enough to activate mechanism of impact ionization (multiplication) Termination  High electric field confined in the core region 𝑾 𝑪𝑬 | 𝐔𝐟𝐬𝐧𝐣𝐨𝐛𝐮𝐣𝐩𝐨 ≫ 𝑾 𝑪𝑬 | 𝑫𝒇𝒐𝒖𝒔𝒃𝒎 Periphery  (Dead region) Charges should not be collected. Reduction of the leakage currents 6 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  7. PAD LGAD: Gain and Noise G. Kramberger — Small noise excess factor (introduced by the stochastic nature of the multiplication process. 7 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  8. PAD LGAD: Red laser TCT characterization Electron multiplication h+ drift e-h pairs 285 um generation e- drift Bottom injection Red laser (670 nm) I (Arb. Unit) STANDARD PIN DIODE LGAD DIODE 5ns Current from Current from Current from primary electrons secondary holes primary electrons Time 8 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  9. PAD LGAD : Response uniformity. 9 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  10. Strip LGAD: Segmented applification N on P microStrips. PiN vs LGAD Aluminum Passivation N+ Cathode P-Stop P-Multiplication 10 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  11. Strip LGAD: Amplification region geometry — Several layouts with different p-well width and n-well depth were manufactured. — BUT most of them presented reduced breakdown voltage and large inverse current. A new run with optimized p-well engineering just produced. — A few samples displayed breakdown voltage above depletion voltage. There were tested with microspot ion beams and x-rays. 11 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  12. Strip LGADs: Ion Beam Induced Charge (1) — Ion Beam Induced Charge at Centro Nacional de Aceleradores in Seville. 12 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  13. Strip LGAD: Ion Beam Induced Charge(2) 13 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  14. Strip LGAD: Ion Beam Induced Charge (3) 14 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  15. Strip LGAD: X-Ray (Diamond Light Source) R. Bates D. Maneuski 15 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  16. Strip LGAG: New run available — Improved amplification p-well engineering. 16 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  17. p-in-p Strip LGAD:The “Inverse” LGAG — Double-sided LGAD with pad-like multiplication structure in the back-side and ohmic read out strips in the front side N on P vs P on P LGAD microStrips Comparison 17 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  18. ILGAD: Pad diode with segmented back-side N + Cathode P-type multiplication layer JTE P-type ( π )substrate P Stop P + Anode 18 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  19. ILGAD – TCAD Validation (1) 2D simulation of three p-on-p microstrip LGAD Electric Field 2D Distribution. Maxim @ Junctions STRIP I-LGAD STRIP LGAD 19 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  20. ILGAD – TCAD Validation (2) MIP through the middle of the sensors (the central strip) @ 100 V 50 um thick substrate ILGAD STANDARD 20 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  21. Summary — Strip sensors with moderated signal gain could significantly reduce the tracking material budget. — Low gain Reach-Through APD architecture successfully implemented and tested in “pad” detectors ( LGAD ) — LGAD implemented in n-in-p microstrips sensors with segmented amplification region (anode). — No gain observed so far in strips LGAD, new batch with optimized amplification p-well. — New design of double-sided p-in-p microstrip LGADs with cathode strip-like segmented cathode as readout ( ILGAD ) — ILGAD TCAD Validation  uniform amplification region and V BD in main junction. 21 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

  22. どうもありがとう ございます Doumo arigatou gozaimasu 22 I. Vila - ALCW 2015 April 20th, Tokio, Japan.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend