polarimetry with the soft gamma polarimetry with the soft
play

Polarimetry with the Soft Gamma Polarimetry with the Soft Gamma- - - PowerPoint PPT Presentation

Polarimetry with the Soft Gamma Polarimetry with the Soft Gamma- - ray Detector onboard ASTRO ray Detector onboard ASTRO-H ray Detector onboard ASTRO ray Detector onboard ASTRO H August 15, 2012 ASTRO-H (2014~) ASTRO H (2014~) COSPAR 2012


  1. Polarimetry with the Soft Gamma Polarimetry with the Soft Gamma- - ray Detector onboard ASTRO ray Detector onboard ASTRO-H ray Detector onboard ASTRO ray Detector onboard ASTRO H August 15, 2012 ASTRO-H (2014~) ASTRO H (2014~) COSPAR 2012 T. Mizuno, H. Tajima, Y. Fukazawa, S. SGD D Watanabe, R. Blanford, P. Coppi, T. Enoto, J. Watanabe, R. Blanford, P. Coppi, T. Enoto, J. Kataoka, M. Kawaharada, M. Kokubun, P. Laurent, F. Lebrun, O. Limousin, G. Madejski, K. Makishima, K. Mori, T. Nakamori, K. , , , Nakazawa, H. Odaka, M. Ohno, M. Ohta, G. Sato, H. Takahashi, T. Takahashi, S. Takeda, T. Tanaka, M. Tashiro, Y. Terada, H. Uchiyama, Y. Uchiyama, S. Yamada, K. Yamaoka, Y. Yatsu, D. Yonetoku, T. Yuasa and SGD team 1

  2. Introduction: Introduction: Polarimetry Polarimetry of of Cyg Cyg X X-1 (1) 1 (1) Radio • VLBA/LVA reveal a radio-emitting jet from Cyg X-1. PA is -21~-24 deg. • Polarization is a powerful probe to study geometries of astrophysical sources (and break model degeneracy) How about the X-ray/ γ -ray polarimetry of the • object? Radio Jet C Comptonization t i ti Stirling+01 Disk reflection (PA: -21~-24 deg.) P jet =10 36 -10 37 erg/s (Gallo+05) (Gallo+05) 3%-50% of L X 2

  3. Introduction: Introduction: Polarimetry Polarimetry of of Cyg Cyg X X-1 (2) 1 (2) Radio How about the X-ray/ γ -ray polarimetry of the • object? Previous X-ray and γ -ray polarimetry suffers • large uncertainty. Interpretation (w.r.t. radio jet) not so straightforward. • We need better sensitivity in polarization. Radio Jet X X-ray C Comptonization t i ti Stirling+01 Disk reflection (PA: -21~-24 deg.) γ -ray y γ Laurent+11 pol.@E>=400 keV (jet?) Long+80 PA: 140+/-15 deg. hint of pol.@2.6/5.2 keV (disk?) PA: 162+/-13 deg. 3

  4. Polarization Sensitivity Polarization Sensitivity • Minimum Detectable Polarization (pol. degree distinguishable from statistical fluctuation) distinguishable from statistical fluctuation) + 4 . 29 R R = = MDP MDP S B 99% Confidence 99% Confidence × M R T S M: Modulation Factor R : Source rate R S : Source rate R B : Background rate T: Obs. time • Larger M better sensitivity • Larger R S (Larger A eff ) (smaller MDP) (smaller MDP) • Smaller R B S ll R A-H (2014~) SGD achieves large M and small R B 4

  5. ASTRO- ASTRO -H H (2014~) SGD (2014~) SGD • Si-CdTe Compton Camera + BGO shiled • Constrain incident angle using Compton kinematics • Constrain incident angle using Compton kinematics – efficient background suppression ( θ -cut) Background Level Background Level m e c 2 2 − m e c 2 2 cos θ = 1 + E 1 + E 2 E 2 Suzaku HXD-GSO (Data) Tajima+ 10 Proc. SPIE 0.1 Crab Compton Scat. Astro-H SGD Photo-abs. BG<=100 mCrab 5

  6. ASTRO- ASTRO -H SGD as a H SGD as a Polarimeter Polarimeter • Si-CdTe Compton Camera + BGO shiled • Constrain incident angle using Compton kinematics • Constrain incident angle using Compton kinematics – efficient background suppression ( θ -cut) – polarization measurement ( φ -measurement) 2 ( φ p ) m e c 2 − m e c 2 2 cos θ = 1 + E 1 + E 2 E 2 Tajima+ 10 pol. vector Proc. SPIE Compton Scat. φ Photo-abs. Lei+97 (Concept of Compton polarimeter) 6

  7. Performance Verification (1) Performance Verification (1) • Beam test at Spring-8 (Synchrotron facility in Japan) • Use 90-degree scattered photons to reduce the beam • Use 90-degree scattered photons to reduce the beam intensity (~170 keV, 92.5% polarized) • Detectors were rotated to study systematic effects 250 keV (>99.9%) SGD prototype 1 layer DSSD 1 layer DSSD pol. vector 4 layers CdTe (Btm) 170 keV (92.5%) 4-sides CdTe Takeda+ 10, NIMA Takeda 10, NIMA 7

  8. Performance Verification (2) Performance Verification (2) • Beam test at Spring-8 (Synchrotron facility in Japan) SGD prototype SGD prototype Modulation Curve = A/B A : polarized beam ● Data ■ Simulation M=0 82 is consistent with the expectation M=0.82 is consistent with the expectation (0.855) within systematic uncertainty of 3% => verifying the detector concept and simulation B : non-polarized beam (Data=0deg+90deg runs) (Data=0deg+90deg runs) M 100 ~0.58 and efficiency~10% w/ flight configuration Takeda+ 10, NIMA 8

  9. Background Simulation (1) Background Simulation (1) • Background estimation and reduction is a key for the SGD polarimetry • SAA protons (radioactivation) and albedo neutrons (elastic scattering) are dominant sources of the BG • We develop Monte-Carlo simulator to study BG p y orbit-average flux SAA protons p Albedo neutrons Yamada 9

  10. Background Simulation (2) Background Simulation (2) • Background estimation and reduction is a key for the SGD polarimetry. the SGD polarimetry. CdTe: data vs. simulation 150 MeV protons (active material w/ large Z) (typical for SGD) ( yp f ) cooling time: 3-5 d cooling time: 18-40 d CdTe or FC (Murakami+03) Mizuno+ 10, proc SPIE • Identify several lines (radioisotopes) in bth data and sim. • Verify Simulation through a comparison with the beam test data 10

  11. Background Simulation (3) Background Simulation (3) • Background estimation and reduction is a key for the SGD polarimetry. the SGD polarimetry. Fine Collimator: data vs. simulation 150 MeV protons (material inside FOV) (typical for SGD) ( yp f ) cooling time: 2 d cooling time: 13 d cooling time: 10 h CdTe or FC (Murakami+03) Mizuno, Nakajima+ • Identify several lines (radioisotopes) in both data and sim. • Verify Simulation through a comparison with the beam test data 11

  12. Crab Nebula Crab Nebula Polarimetry Polarimetry (Current Status) (Current Status) N OSO-8 (Weisskopf+78) PA @2 6/5 2 keV PA @2.6/5.2 keV PD=20% E INTEGRAL (Dean+08, Forot+08) PA@ >100 keV PD=50% aligned with pulsar rot. axis 2’ 2 • Great success by INTEGRAL SPI/IBIS, but large error (~10 deg in PA) prevents unambiguous interpretation 12

  13. SGD Polarimetry SGD Polarimetry of the Crab Nebula of the Crab Nebula • Precise measurement of pol. angle – comparison with a pulsar rot. axis within a few degree comparison with a pulsar rot. axis within a few degree SGD Simulation, 100 ks accuracy SGD Simulation, 100 ks obs. 50% polarization @80-300keV assumed INTEGRAL IBIS INTEGRAL IBIS Modulation Curve@200-800 keV (pol. deg.>88% PA=122+-7deg.) g ) Tanaka Forot+08 13

  14. Cyg Cyg X X- -1 1 Polarimetry Polarimetry (Current Status) (Current Status) Radio How about the X-ray/ γ -ray polarimetry of the • object? Previous X-ray and γ -ray polarimetry suffers • large uncertainty. Interpretation (w.r.t. radio jet) not so straightforward. Radio Jet X-ray X Comptonization C t i ti Stirling+01 Disk reflection (PA: -21~-24 deg.) γ -ray y γ Laurent+11 pol.@E>=400 keV (jet?) Long+80 PA: 140+/-15 deg. hint of pol.@2.6/5.2 keV (disk?) PA: 162+/-13 deg. 14

  15. SGD SGD Polarimetry Polarimetry of of Cyg Cyg X X-1 • Assume jet component is contaminated by disk Comptonization in the SGD band (PD<=20%) – still able to disclose weak polarization hidden in Comptonization down to 100 keV SGD Simulation, 300 ks 10% polarization @100-180keV p INTEGRAL IBIS INTEGRAL IBIS Modulation Curve@250-400 keV (PD<=20%) Δ PA~2 deg 17% polarization @180-330keV 17% polarization @180 330keV Δ PA~3 deg Laurent+11 Tanaka 15

  16. Summary Summary • Polarization measurement can place constraints on source geometry ( qualitatively new information ) source geometry ( qualitatively new information ) • Astro-H SGD is a Compton polarimeter. It is well validated through experimental test and simulation. • The SGD is able to precisely measure polarization from Crab Nebula and Cyg X-1. Can constrain magnetic field (and disk) direction within a few degree. (and disk) direction within a few degree. Thank you for your Attention Thank you for your Attention 16

  17. Backup Slides Backup Slides Backup Slides Backup Slides 17

  18. A Jet A Jet- -blowing Ring blowing Ring • Large scale ring-like structure inflated by the inner jet G ll Gallo+05 05 ~5 pc ring @ 1.4 GHz P jet =10 36 -10 37 erg/s milliarcsec-scale radio jet radio jet 18

  19. X- -ray/Gamma ray/Gamma- -ray ray Polarimetry Polarimetry • Why polarization? (1) place constraints on source geometries (2) break model degeneracy geometries (2) break model degeneracy – Synchrotron emission (magnetic field) – Compton up-scattering radiation (see photons, disk) – Pol. due to QED or general relativity (constraints on P l d t QED l l ti it ( t i t fundamental physics and compact object) BHB, AGN PWN Pulsar Magnetic field, Pulsar emission model, Accretion disk, Accelerated electrons QED Jet X/ γ -ray pol. not subject to Faraday rotation/depolarization 19

  20. X- -ray/Gamma ray/Gamma- -ray ray SpectroPolarimetry SpectroPolarimetry • Measuring energy dependent polarization is crucial to disentangle emission mechanisms disentangle emission mechanisms – transition from one pol. generation process to another may occur over broad energy range Blazar model (Poutanen94) Blazar model (Poutanen94) disk reflection model (Matt+93) disk reflection model (Matt+93) pol. vector � disk on flux 10% photo degree 1% 1% synchrotron h t pol. d e ol. degree total IC IC po 0.1% 3 10 keV 50 ** pol. may be low in EC ** 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend