x ray reflection from ionised accretion discs a new xspec
play

X-ray reflection from ionised accretion discs a new XSPEC model - PowerPoint PPT Presentation

X-ray reflection from ionised accretion discs a new XSPEC model Michal Dov ciak Astronomical Institute Academy of Sciences of the Czech Republic Prague Ji r Svoboda Matteo Guainazzi European Space Astronomy Centre,


  1. X-ray reflection from ionised accretion discs – a new XSPEC model Michal Dovˇ ciak Astronomical Institute Academy of Sciences of the Czech Republic Prague Jiˇ r´ ı Svoboda Matteo Guainazzi European Space Astronomy Centre, Villafranca del Castillo From the Dolomites to the event horizon: Sledging down the Black Hole potential well Sesto Val Pusteria, 15 th – 19 th July 2013

  2. StrongGravity logo explanation

  3. Scheme of the lamp-post geometry observer ◮ spin a a ◮ inclination θ o corona ◮ height h ◮ photon index Γ h δ i δ e black hole ◮ luminosity L / L edd M ∆Φ ◮ mass M / M 8 r in ( M 8 = 10 8 M ⊙ ) Ω r accretion disc ◮ density n H out

  4. Illumination geometry a = 1.0, Γ = 2.0 a = 1.0, Γ = 2.0 8 10 0 Heights 7 1.1 10 -2 1.5 6 2 N inc [arbitrary units] 10 -4 3 5 6 15 4 10 -6 q 100 Heights 3 100 10 -8 15 6 2 3 10 -10 2 1 1.5 1.1 10 -12 0 1 10 100 1000 1 10 100 1000 r [GM/c 2 ] r [GM/c 2 ] ◮ Wilkins DR & Fabian AC (2011) MNRAS , 414, 1269 ◮ Svoboda J, Dovˇ ciak M, Goosmann RW, Jethwa P , Karas V, Miniutti G & Guainazzi M (2012) A&A , 545, A106 ◮ Wilkins DR & Fabian AC (2012) MNRAS , 424, 1284

  5. Emission directionality a = 1 , θ = 30 ◦ , Γ = 2 0 0.2 0.4 0.6 0.8 1 0.00 0.25 0.50 0.75 1.00 20 incident emission 10 angle µ i angle µ e 16 5 h [GM/c 2 ] 12 y 0 8 −5 4 −10 1 1 10 100 −10 −5 0 5 10 r [GM/c 2 ] x emission directionality M ( µ i , µ e ) ◮ Svoboda J, Dovˇ ciak M, Goosmann RW & Karas V (2009) A&A , 507, 1

  6. Emission directionality a = 1 , θ o = 30 ◦ , h = 3 , Γ = 2 G — transfer function M — angular directionality 0.00 0.25 0.50 0.75 1.00 3 4 5 6 7 10 10 5 5 0 0 y y −5 −5 −10 −10 −10 −5 0 5 10 −10 −5 0 5 10 x x relativistic effects local re-processing

  7. Emission directionality a = 1 , θ o = 30 ◦ , h = 3 , Γ = 2 G — transfer function M — angular directionality 0.00 0.25 0.50 0.75 1.00 3 4 5 6 7 10 10 5 5 0 0 y y −8.00 −6.75 −5.50 −4.25 −3.00 10 −5 −5 5 −10 −10 y 0 −10 −5 0 5 10 −10 −5 0 5 10 x x −5 relativistic effects local re-processing −10 −10 −5 0 5 10 G × R × M x

  8. Lamp-post geometry versus broken power law h = 1.5 GM/c 2 , θ o =30 ° , q = 6.2, r b = 5 GM/c 2 h = 2 GM/c 2 , θ o =30 ° , q = 4.3, r b = 10 GM/c 2 0.3 0.4 LPI LPI BPI BPI LPN LPN 0.3 0.2 Photon flux Photon flux 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 E [keV] E [keV] For low heights: → broken power-law is not a good approximation of lamp-post geometry → line shape is greatly influenced by the emission directionality → this is mainly due to its dependence on the incident angle

  9. Disc ionization Current Theoretical Model 100 reflionx ξ = 1000 10 ξ = 10 Photons cm −2 s −1 keV −1 1 0.1 0.01 2 4 6 8 10 Energy (keV) dovciak 23−Feb−2013 18:17 ◮ Ross RR & Fabian AC (2005), MNRAS , 358, 211 ◮ Svoboda J, Dovˇ ciak M, Goosmann RW, Jethwa P , Karas V, Miniutti G & Guainazzi M (2012) A&A , 545, A106

  10. Disc ionization Dependence on height: 4 h [GM/c 2 ] 3 1.5 ξ ∼ L / L edd 3 2 10 M n H 100 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , Γ = 2 . 0 r [GM/c 2 ]

  11. Disc ionization Dependence on photon index: 4 Γ 1.4 3 ξ ∼ L / L edd 2.0 2.6 2 M n H 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , h = 3 r [GM/c 2 ]

  12. Disc ionization Dependence on photon index: 4 Γ 1.4 3 ξ ∼ L / L edd 2.0 2.6 2 M n H 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , h = 10 r [GM/c 2 ]

  13. Disc ionization Dependence on density profile: 4 Γ = 2.0, q n = 0 Γ = 2.0, q n = -2 3 Γ = 2.6, q n = -2 ξ ∼ L / L edd 2 M n H 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , h = 10 r [GM/c 2 ] n H ∼ r q n

  14. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  15. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. ◮ scales the primary M/M8 1. 1e-8 1e+3 flux (given in L edd ) GM/c 2 height 3. 1.1 100. ◮ scales the incident flux (as D − 1 ) PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 ◮ scales the ionization Np:Nr 0. 0. 10. ◮ scales the reflected density 1. 1e-8 1e+8 flux den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  16. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 ◮ affects the primary GM/c 2 height 3. 1.1 100. flux (light bending PhoIndex 2. 1.4 3.3 model) L/Ledd 0.001 1e-10 1e+10 ◮ affects the incident flux (radial structure) Np:Nr 0. 0. 10. ◮ affects the ionization density 1. 1e-8 1e+8 den prof 0. -5. 0. ◮ affects the reflected flux abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  17. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  18. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 ◮ scales the primary L/Ledd 0.001 1e-10 1e+10 flux Np:Nr 0. 0. 10. ◮ scales the incident density 1. 1e-8 1e+8 flux den prof 0. -5. 0. ◮ scales the ionization abun 1. 0.1 20. ◮ scales the reflected zshift 0. -0.999 10. flux limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  19. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 may be used to estimate L/Ledd 0.001 1e-10 1e+10 discrepancy between the Np:Nr 0. 0. 10. primary and reflected flux density 1. 1e-8 1e+8 (e.g. due to the anisotropy den prof 0. -5. 0. or obscuration of the primary radiation) abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  20. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 ◮ affect the ionization den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  21. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  22. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  23. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  24. KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.

  25. KYREFLIONX example Current Theoretical Model 10 keV 2 (Photons cm −2 s −1 keV −1 ) 1 0.1 0.01 0.1 1 10 100 Energy (keV) dovciak 19−Jul−2013 08:47

  26. Dynamic spectrum – ionized reflection E × F E

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend