identity types as equality predicates
play

Identity types as equality predicates Reconciling hyperdoctrines - PowerPoint PPT Presentation

Pierre Cagne joint work with Paul-Andr Mellis Universit Paris Diderot Paris 7 Identity types as equality predicates Reconciling hyperdoctrines with MLTT HoTT 2019 Carnegie Mellon University August 12, 2019 1. Lawveres


  1. Pierre Cagne joint work with Paul-André Melliès Université Paris Diderot – Paris 7 Identity types as equality predicates Reconciling hyperdoctrines with MLTT HoTT 2019 – Carnegie Mellon University August 12, 2019

  2. 1. Lawvere’s hyperdoctrines 2. Reconcile hyperdoctrines with intensional equalities

  3. 1. Lawvere’s hyperdoctrines

  4. What does it have to do with logic? Lawvere’s hyperdoctrines An hyperdoctrine is a pseudofunctor 𝑄 ∶ C op → Cat such that: • C has fjnite products, • each 𝑄(𝑔 ) has both a left adjoint ∃ 𝑔 and a right adjoint ∀ 𝑔 , • each 𝑄(𝑑) is a cartesian closed category.

  5. Lawvere’s hyperdoctrines An hyperdoctrine is a pseudofunctor 𝑄 ∶ C op → Cat such that: • C has fjnite products, • each 𝑄(𝑔 ) has both a left adjoint ∃ 𝑔 and a right adjoint ∀ 𝑔 , • each 𝑄(𝑑) is a cartesian closed category. What does it have to do with logic?

  6. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  7. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  8. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  9. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  10. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  11. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  12. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  13. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  14. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵 ∃ 𝑔 𝑟 𝑞 ⌟ Π 𝑔 𝑟 ∀ 𝑔 𝑟 • 𝑔 𝑟 𝑍 𝐵 𝑟 𝑍 𝑟 𝑍 𝑌 𝑔 𝐶 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌

  15. 𝑍 ⌟ 𝐶 𝑔 𝑌 𝑞 𝑍 𝑟 𝑍 𝑟 𝐵 ∃ 𝑔 𝑟 𝑔 𝑟 • ∀ 𝑔 𝑟 Π 𝑔 𝑟 Seely’s semantics is an hyperdoctrine 𝐵 𝑔 × 𝑞 𝑌 In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ id 𝐵 ↦ 𝜀 𝐵

  16. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  17. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  18. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  19. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  20. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  21. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  22. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  23. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  24. In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ } ⊆ 𝐶 𝑔 𝑊 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊)

  25. ⊆ 𝐶 𝑔 𝑊 ⊆ 𝑉 𝑉 ∃ 𝑔 𝑉 𝐵 ∀ 𝑔 𝑉 ⊆ ⊆ Subsets form an hyperdoctrine 𝑔 (𝑉) = {𝑐 ∈ 𝐶 ∶ ∃𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ∧ 𝑏 ∈ 𝑉} 𝑔 ∗ (𝑉) = {𝑐 ∈ 𝐶 ∶ ∀𝑏 ∈ 𝐵, 𝑔 (𝑏) = 𝑐 ⇒ 𝑏 ∈ 𝑉} 𝑔 −1 (𝑊) In particular for 𝑔 = 𝜀 𝐵 ∶ 𝐵 → 𝐵 × 𝐵 , ∃ 𝜀 𝐵 ∶ 𝐵 ↦ {(𝑏, 𝑏 ′ ) ∈ 𝐵 × 𝐵 ∶ 𝑏 = 𝑏 ′ }

  26. In particular for ⃗ 𝑦) ∶ (𝑦 1 , … , 𝑦 𝑜 ) → (𝑦 1 , … , 𝑦 2𝑜 ) , 𝑦) ∶ ⊤ ↦ ⋀ 𝑦 𝑗 = 𝑦 𝑜+𝑗 𝑧 𝑦) 𝑦, ⃗ 𝑦) = (⃗ 𝑢(⃗ 𝑦 ⊧ ⊧ ⊧ ⊧ 𝑦) 𝑦,⃗ ⃗ ∀⃗ ⃗ ⃗ 𝑗 ∃ (⃗ 𝑦) 𝜒(⃗ 𝑦) 𝜒(⃗ 𝑦)) 𝑢(⃗ 𝜔(⃗ 𝑧) 𝜔(⃗ 𝑦) 𝑢(⃗ ∃⃗ Predicates form an hyperdoctrine 𝑦, (⋀ 𝑗 𝑢 𝑗 (⃗ 𝑦) = 𝑧 𝑗 ) ∧ 𝜒(⃗ 𝑦, (⋀ 𝑗 𝑢 𝑗 (⃗ 𝑦) = 𝑧 𝑗 ) ⇒ 𝜒(⃗

  27. In particular for ⃗ 𝑦) ∶ (𝑦 1 , … , 𝑦 𝑜 ) → (𝑦 1 , … , 𝑦 2𝑜 ) , 𝑦) ∶ ⊤ ↦ ⋀ 𝑦 𝑗 = 𝑦 𝑜+𝑗 𝑧 𝑦) 𝑦, ⃗ 𝑦) = (⃗ 𝑢(⃗ 𝑦 ⊧ ⊧ ⊧ ⊧ 𝑦) 𝑦,⃗ ⃗ ∀⃗ ⃗ ⃗ 𝑗 ∃ (⃗ 𝑦) 𝜒(⃗ 𝑦) 𝜒(⃗ 𝑦)) 𝑢(⃗ 𝜔(⃗ 𝑧) 𝜔(⃗ 𝑦) 𝑢(⃗ ∃⃗ Predicates form an hyperdoctrine 𝑦, (⋀ 𝑗 𝑢 𝑗 (⃗ 𝑦) = 𝑧 𝑗 ) ∧ 𝜒(⃗ 𝑦, (⋀ 𝑗 𝑢 𝑗 (⃗ 𝑦) = 𝑧 𝑗 ) ⇒ 𝜒(⃗

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend