i nterpolating and approximating i mplicit surfaces from
play

I nterpolating and Approximating I mplicit Surfaces from Polygon - PowerPoint PPT Presentation

I nterpolating and Approximating I mplicit Surfaces from Polygon Soup Chen Shen, James F. OBrien, Jonathan R. Shewchuk University of California, Berkeley Geometric Algorithms Seminar CS 468 Fall 2005 Overview Overview Talk Overview:


  1. I nterpolating and Approximating I mplicit Surfaces from Polygon Soup Chen Shen, James F. O’Brien, Jonathan R. Shewchuk University of California, Berkeley Geometric Algorithms Seminar CS 468 – Fall 2005

  2. Overview Overview Talk Overview: Talk Overview: • Motivation • Motivation • Implicit Surface Fitting • Implicit Surface Fitting for Polygon Soup for Polygon Soup • Computational Aspects • Computational Aspects • Extensions • Extensions • Results • Results 2 CS 468 – Geometric Algorithms Seminar – Fall 2005

  3. 3 Motivation Motivation

  4. What does the paper do? What does the paper do? Goal: Convert polygon mesh into implicit surface Goal: Convert polygon mesh into implicit surface (and back again) (and back again) Applications: Applications: • Mesh cleanup – create consistent meshes • Mesh cleanup – create consistent meshes from polygon soup from polygon soup • Topological simplification • Topological simplification • Creating bounding volumes • Creating bounding volumes 4 CS 468 – Geometric Algorithms Seminar – Fall 2005

  5. Consistent Meshes Consistent Meshes Polygon models often show consistency issues: Polygon models often show consistency issues: } – fixed • Holes and gaps (no closed surface) • Holes and gaps (no closed surface) • T-junctions in meshing • T-junctions in meshing • Non-manifold structure, • Non-manifold structure, } – partially fixed self intersections self intersections • Inconsistent normals • Inconsistent normals } – preprocessing • Sometimes: Internal structure • Sometimes: Internal structure should be omitted should be omitted 5 CS 468 – Geometric Algorithms Seminar – Fall 2005

  6. Topological Simplification Topological Simplification Create simplified bounding Create simplified bounding volume, allowing topological volume, allowing topological changes: changes: Useful for... Useful for... • Mesh simplification • Mesh simplification • Spatial queries • Spatial queries (e.g. collision detection) (e.g. collision detection) [Shen et al. 04] 6 CS 468 – Geometric Algorithms Seminar – Fall 2005

  7. Related Work Related Work Reconstruction via Implicit Surfaces: Reconstruction via Implicit Surfaces: • Standard technique: see e.g. [Hoppe et al. ’92], • Standard technique: see e.g. [Hoppe et al. ’92], [Turk et al. ’99], [Carr et al. ’01], [Turk et al. ’02], ... [Turk et al. ’99], [Carr et al. ’01], [Turk et al. ’02], ... • General reconstruction procedure: • General reconstruction procedure: • Estimate normals • Estimate normals • Approx. signed distance function • Approx. signed distance function This paper • Apply marching cubes • Apply marching cubes • (Possibly: Simplify result) • (Possibly: Simplify result) 7 CS 468 – Geometric Algorithms Seminar – Fall 2005

  8. Reconstruction via I mplicit Surfaces Reconstruction via I mplicit Surfaces Initial data Initial data Estimate normals Estimate normals Signed distance func. Signed distance func. Marching cubes Marching cubes Final mesh Final mesh 8 CS 468 – Geometric Algorithms Seminar – Fall 2005

  9. Reconstruction via I mplicit Surfaces Reconstruction via I mplicit Surfaces Initial data Initial data Estimate normals Estimate normals Signed distance func. Signed distance func. Marching cubes Marching cubes Final mesh Final mesh 9 CS 468 – Geometric Algorithms Seminar – Fall 2005

  10. Reconstruction via I mplicit Surfaces Reconstruction via I mplicit Surfaces Initial data Initial data Estimate normals Estimate normals Signed distance func. Signed distance func. Marching cubes Marching cubes Final mesh Final mesh 10 CS 468 – Geometric Algorithms Seminar – Fall 2005

  11. Reconstruction via I mplicit Surfaces Reconstruction via I mplicit Surfaces Initial data Initial data Estimate normals Estimate normals Signed distance func. Signed distance func. Marching cubes Marching cubes Final mesh Final mesh This paper: technique This paper: technique for polygon meshes for polygon meshes 11 CS 468 – Geometric Algorithms Seminar – Fall 2005

  12. Reconstruction via I mplicit Surfaces Reconstruction via I mplicit Surfaces Initial data Initial data Estimate normals Estimate normals Signed distance func. Signed distance func. Marching cubes Marching cubes Final mesh Final mesh 12 CS 468 – Geometric Algorithms Seminar – Fall 2005

  13. Reconstruction via I mplicit Surfaces Reconstruction via I mplicit Surfaces Initial data Initial data Estimate normals Estimate normals Signed distance func. Signed distance func. Marching cubes Marching cubes Final mesh Final mesh 13 CS 468 – Geometric Algorithms Seminar – Fall 2005

  14. What is this paper about? What is this paper about? In this paper: this Defining the step implicit function But: Consider polygon models input: polygons 14 CS 468 – Geometric Algorithms Seminar – Fall 2005

  15. Utility Utility Hole Filling: Create well-defined closed surface Hole Filling: Create well-defined closed surface 15 CS 468 – Geometric Algorithms Seminar – Fall 2005

  16. Utility Utility Also: Remeshing (Marching Cubes) T-vertex, small hole fixed: remeshed 16 CS 468 – Geometric Algorithms Seminar – Fall 2005

  17. Utility Utility Missing Normals: Reconstruct (a few) missing normals Missing Normals: Reconstruct (a few) missing normals ? ? ? 17 CS 468 – Geometric Algorithms Seminar – Fall 2005

  18. I mplicit Surface Fitting I mplicit Surface Fitting for Polygon Soup for Polygon Soup 18

  19. Least-Squares Least-Squares Least Squares Approximation: B 1 B 2 B 3 p i = ( x i , φ i ) basis functions target values w ( x ) weighting functions least squares fit 19 CS 468 – Geometric Algorithms Seminar – Fall 2005

  20. Least-Squares Least-Squares Least Squares Approximation: ~ n ∑ φ = ( x ) c B ( x ) i i = i 1 Best Fit: ( ) n ~ 2 ∑ φ − φ argmin ( x ) w ( x ) i i i c = i 1 i 20 CS 468 – Geometric Algorithms Seminar – Fall 2005

  21. Least-Squares Least-Squares ( ) ( ) φ = Normal Equations: T 2 T 2 B W B c B W ( ) − 1 = φ Solution: T 2 T 2 c B W B B W ( ) ~ − φ =< >= 1 φ Evaluation: T T 2 T 2 ( x ) b ( x ), c b ( x ) B W B B W [ ] Notation: = b : B ,..., B 1 n − − φ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ b ( x ) c w ( x ) 1 1 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = φ = = = M M M O B : : c : W : ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − − φ w ( x ) ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ b ( x ) c n n n n 21 CS 468 – Geometric Algorithms Seminar – Fall 2005

  22. Moving Least-Squares Moving Least-Squares Moving Least Squares Approximation: target values move basis and weighting function, ~ recompute approximation φ ( x ) 22 CS 468 – Geometric Algorithms Seminar – Fall 2005

  23. Moving Least-Squares Moving Least-Squares Moving Least Squares Approximation: target values approximation 23 CS 468 – Geometric Algorithms Seminar – Fall 2005

  24. Application... Application... Approach: Approach: • MLS-Approximation of implicit • MLS-Approximation of implicit function in space: f : � 3 → � function in space: f : � 3 → � • Set polygons surface to zero • Set polygons surface to zero • Normal constraints: implicit • Normal constraints: implicit function should grow in normal direction function should grow in normal direction • Coordinate frame: � 3 • Coordinate frame: � 3 (no non-linear coord.-sys. estimation) (no non-linear coord.-sys. estimation) • Weighting function: w ( r ) = 1/( r 2 + ε 2 ) • Weighting function: w ( r ) = 1/( r 2 + ε 2 ) 24 CS 468 – Geometric Algorithms Seminar – Fall 2005

  25. Weighting Function Weighting Function Weighting Function Used in This Paper: Vary ε to adjust tightness of fit. 25 CS 468 – Geometric Algorithms Seminar – Fall 2005

  26. Polygonal Constraints Polygonal Constraints Problem: Need polygonal constraints (not point constraints) [Shen et al. 04] 26 CS 468 – Geometric Algorithms Seminar – Fall 2005

  27. Polygonal Constraints Polygonal Constraints Idea: Use infinite number of points (i.e. integrate) ( ) ( ) φ = Normal Equations: T 2 T 2 B W B c B W Can be rewritten: Sum of point constraints ⎛ ⎞ N N ∑ ∑ = φ ⎜ ⎟ 2 T 2 w ( x , x ) b ( x ) b ( x ) c ( x ) w ( x , x ) b ( x ) i i i i i i ⎝ ⎠ = = i 1 i 1 ( Just some algebra ) 27 CS 468 – Geometric Algorithms Seminar – Fall 2005

  28. Polygonal Constraints Polygonal Constraints Point Constraints: ⎛ ⎞ N N ∑ ∑ = φ ⎜ ⎟ 2 T 2 w ( x , x ) b ( x ) b ( x ) c ( x ) w ( x , x ) b ( x ) i i i i i i ⎝ ⎠ = = i 1 i 1 Polygonal Constraints: ⎛ ⎞ N N ∑ ∫ ∑ ∫ ⎜ ⎟ = φ 2 T 2 w ( x , p ) b ( p ) b ( p ) dp c ( x ) w ( x , p ) b ( p ) d p ⎜ ⎟ k ⎝ ⎠ = = k 1 k 1 Poly Poly k k (just integrate over all polygon points) 28 CS 468 – Geometric Algorithms Seminar – Fall 2005

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend