approximating the rectilinear crossing number
play

Approximating the rectilinear crossing number Jacob Fox, J anos - PowerPoint PPT Presentation

Approximating the rectilinear crossing number Jacob Fox, J anos Pach, Andrew Suk September 17, 2016 Jacob Fox, J anos Pach, Andrew Suk Approximating the rectilinear crossing number Crossing numbers Crossing number cr ( G ) = minimum


  1. Approximating the rectilinear crossing number Jacob Fox, J´ anos Pach, Andrew Suk September 17, 2016 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  2. Crossing numbers Crossing number cr ( G ) = minimum number of crossing pairs of edges over all drawings of G . Rectilinear crossing number cr ( G ) = minimum number of crossing pairs of edges over all straight-line drawings of G � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  3. cr versus cr cr ( G ) ≤ cr ( G ) Theorem (F´ ary 1948) cr ( G ) = 0 if and only if cr ( G ) = 0 . Theorem (Bienstock and Dean 1993) There is a sequence of graphs G 1 , G 2 , . . . , G m , . . . such that cr ( G m ) = 4 cr ( G m ) ≥ m Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  4. Rectilinear crossing number Computing cr ( G ) is NP-hard (Bienstock 1991) Open problem : Determine the asymptotic value of cr ( K n ). Theorem (´ Abrego et al. 2012 and Fabila-Monroy and L´ opez 2014) � n � � n � 0 . 379972 < cr ( K n ) < 0 . 380473 4 4 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  5. Main result: approximating cr ( G ) Theorem (Fox, Pach, S. 2016) There is a deterministic n 2+ o (1) -time algorithm for constructing a straight-line drawing of any n-vertex graph G in the plane with cn 4 cr ( G ) + (log log n ) c ′ crossing pairs of edges. Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  6. Crossing Lemma Lemma (Ajtai, Chv´ atal, Newborn, Szemer´ edi 1982 and Leighton 1983) Let G be a graph on n vertices and e edges. Then e 3 cr ( G ) ≥ 64 n 2 − 4 n Dense graph: | E ( G ) | ≥ ǫ n 2 , we have cr ( G ) = α n 4 + o ( n 4 ). Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  7. A (1 + o(1))-approximation for dense graphs Theorem (Fox, Pach, Suk 2016) There is a deterministic n 2+ o (1) -time algorithm for constructing a straight-line drawing of any n-vertex graph G with | E ( G ) | > ǫ n 2 , such that the drawing has at most cr ( G ) + o ( cr ( G )) crossing pairs of edges. Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  8. Generalization to weighted graphs Edge weighted graphs. G = ( V , E ), w G : E → [0 , 1]. For a fixed drawing D , the weighted number of crossings is � w G ( e ) · w G ( e ′ ) ( e , e ′ ) ∈ X D � � � � � � � � 1 .5 .3 � � � � � � � � � � � � Example: 0.5 + 0.3 = 0.8 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  9. Generalization to weighted graphs Edge weighted graphs. G = ( V , E ), w G : E → [0 , 1]. (each weight uses at most O (log n ) bits) For a fixed drawing D , the weighted number of crossings is � w G ( e ) · w G ( e ′ ) ( e , e ′ ) ∈ X D � � � � � � � � 1 .5 .3 � � � � � � � � � � � � Example: 0.5 + 0.3 = 0.8 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  10. Rectilinear crossing number of edge-weighted graphs � w G ( e ) · w G ( e ′ ) cr ( G ) = min D ( e , e ′ ) ∈ X D If G is not weighted, w G ( e ) = 1 if e ∈ E ( G ) w G ( e ) = 0 if e �∈ E ( G ). Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  11. Theorem (Frieze-Kannan 1999) For any ǫ > 0 , every graph G = ( V , E ) has a equitable vertex partition V = V 1 ∪ · · · ∪ V K , 1 /ǫ < K < 2 c ǫ − 2 , such that for all disjoint subsets S , T ⊂ V ( G ) � � � � e ( V i , V j ) | S ∩ V i || T ∩ V j | � < ǫ n 2 � � e ( S , T ) − � � ( n / K ) 2 � � 1 ≤ i , j ≤ K � � G = Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  12. Theorem (Frieze-Kannan 1999) For any ǫ > 0 , every graph G = ( V , E ) has a equitable vertex partition V = V 1 ∪ · · · ∪ V K , 1 /ǫ < K < 2 c ǫ − 2 , such that for all disjoint subsets S , T ⊂ V ( G ) � � � � e ( V i , V j ) | S ∩ V i || T ∩ V j | � < ǫ n 2 � � e ( S , T ) − � � ( n / K ) 2 � � 1 ≤ i , j ≤ K � � G = Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  13. Theorem (Frieze-Kannan 1999) For any ǫ > 0 , every graph G = ( V , E ) has a equitable vertex partition V = V 1 ∪ · · · ∪ V K , 1 /ǫ < K < 2 c ǫ − 2 , such that for all disjoint subsets S , T ⊂ V ( G ) � � � � e ( V i , V j ) | S ∩ V i || T ∩ V j | � < ǫ n 2 � � e ( S , T ) − � � ( n / K ) 2 � � 1 ≤ i , j ≤ K � � G = T S Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  14. Theorem (Frieze-Kannan 1999) For any ǫ > 0 , every graph G = ( V , E ) has a equitable vertex partition V = V 1 ∪ · · · ∪ V K , 1 /ǫ < K < 2 c ǫ − 2 , such that for all disjoint subsets S , T ⊂ V ( G ) � � � � e ( V i , V j ) | S ∩ V i || T ∩ V j | � < ǫ n 2 � � e ( S , T ) − � � ( n / K ) 2 � � 1 ≤ i , j ≤ K � � G = T S Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  15. Theorem (Frieze-Kannan 1999) For any ǫ > 0 , every graph G = ( V , E ) has a equitable vertex partition V = V 1 ∪ · · · ∪ V K , 1 /ǫ < K < 2 c ǫ − 2 , such that for all disjoint subsets S , T ⊂ V ( G ) � � � � e ( V i , V j ) | S ∩ V i || T ∩ V j | � < ǫ n 2 � � e ( S , T ) − � � ( n / K ) 2 � � 1 ≤ i , j ≤ K � � Theorem (Dellamonica et al. 2015) There is a determinist 2 2 ǫ − c n 2 -time algorithm for computing such a partition. Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  16. Given a Frieze-Kannan regular partition P : V = V 1 ∪ · · · ∪ V K : V V V 3 V 1 4 2 G = ... V V V 6 K 5 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  17. Given a Frieze-Kannan regular partition P : V = V 1 ∪ · · · ∪ V K : V V 3 V 1 V 4 2 G = P ... V V V 6 K 5 w G P ( uv ) = 0 if u , v ∈ V i , w G P ( uv ) = e G ( V i , V j ) if u ∈ V i , v ∈ V j ( n / K ) 2 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  18. Given a Frieze-Kannan regular partition P : V = V 1 ∪ · · · ∪ V K : V V 1 V V 3 4 2 G = P ... V V V 6 K 5 w G P ( uv ) = 0 if u , v ∈ V i , w G P ( uv ) = e G ( V i , V j ) if u ∈ V i , v ∈ V j ( n / K ) 2 G ≈ G P : For S , T ⊂ V , | e G ( S , T ) − e G P ( S , T ) | < ǫ n 2 . Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  19. cr ( G ) versus cr ( G P ) Using the regularity lemma for same-type transversals (Fox-Pach-S.) Key Lemma Lemma (Fox, Pach, S. 2016) 1 4 C n 4 | cr ( G ) − cr ( G P ) | < ǫ Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  20. Defining G / P Given a Frieze-Kannan regular partition P : V = V 1 ∪ · · · ∪ V K : V V V 3 V 1 4 2 G = P ... V V V 6 K 5 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  21. Defining G / P Given a Frieze-Kannan regular partition P : V = V 1 ∪ · · · ∪ V K : �� �� � � � �� �� �� �� � � 2 3 4 1 G / P = �� �� � � �� �� ... �� �� � � �� �� K 5 6 V ( G / P ) = { 1 , 2 , . . . , K } w G / P ( ij ) = e G ( V i , V j ) if u ∈ V i , v ∈ V j ( n / K ) 2 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  22. Defining G / P Given a Frieze-Kannan regular partition P : V = V 1 ∪ · · · ∪ V K : �� �� � � � �� �� �� �� � � 2 3 4 1 G / P = �� �� � � �� �� ... �� �� � � �� �� K 5 6 V ( G / P ) = { 1 , 2 , . . . , K } w G / P ( ij ) = e G ( V i , V j ) if u ∈ V i , v ∈ V j ( n / K ) 2 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  23. � � �� �� � � � � �� �� �� �� � � 2 3 4 1 G / P = �� �� ... �� �� � �� �� K 5 6 V V 3 V 1 V 4 2 G = P ... V V V 6 K 5 G P is an ( n / K )-blow up of G / P . Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  24. Simple Lemma Lemma � n � 4 cr ( G / P ) ≤ cr ( G P ) K Proof. Consider a drawing of G P with cr ( G P ) weighted crossings. V V 3 V 1 V 4 2 G = P ... V V V 6 K 5 Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

  25. Simple Lemma Lemma � n � 4 cr ( G / P ) ≤ cr ( G P ) K Proof. Consider a drawing of G P with cr ( G P ) weighted crossings. �� �� �� �� � �� �� � � � � G = P � � � � � �� �� � G/P at least cr ( G / P ) weighted crossings. Jacob Fox, J´ anos Pach, Andrew Suk Approximating the rectilinear crossing number

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend