high energy neutrinos
play

High-Energy Neutrinos Michael Kachelrie NTNU, Trondheim [] - PowerPoint PPT Presentation

High-Energy Neutrinos Michael Kachelrie NTNU, Trondheim [] Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources


  1. High-Energy Neutrinos Michael Kachelrieß NTNU, Trondheim []

  2. Introduction Outline of the talk 1 Introduction 2 IceCube events ◮ properties ◮ implications 3 Astrophysical sources ◮ point sources versus diffuse flux ◮ Galactic sources versus extragalactic 4 PeV dark matter 5 Summary Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

  3. Introduction Outline of the talk 1 Introduction 2 IceCube events ◮ properties ◮ implications ◮ or better speculations. . . 3 Astrophysical sources ◮ point sources versus diffuse flux ◮ Galactic sources versus extragalactic 4 PeV dark matter 5 Summary Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

  4. Introduction Outline of the talk 1 Introduction 2 IceCube events ◮ properties ◮ implications ◮ or better speculations. . . 3 Astrophysical sources ◮ point sources versus diffuse flux ◮ Galactic sources versus extragalactic 4 PeV dark matter 5 Summary Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

  5. Introduction Outline of the talk 1 Introduction 2 IceCube events ◮ properties ◮ implications ◮ or better speculations. . . 3 Astrophysical sources ◮ point sources versus diffuse flux ◮ Galactic sources versus extragalactic 4 PeV dark matter 5 Summary Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

  6. Introduction Outline of the talk 1 Introduction 2 IceCube events ◮ properties ◮ implications ◮ or better speculations. . . 3 Astrophysical sources ◮ point sources versus diffuse flux ◮ Galactic sources versus extragalactic 4 PeV dark matter 5 Summary Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

  7. Introduction 1912: Victor Hess discovers cosmic rays “The results are most easily ex- plained by the assumption that ra- diation with very high penetrating power enters the atmosphere from above; the Sun can hardly be con- sidered as the source.” Hess’ and Kolhoerster’s results: 80 60 excess ionization 40 20 0 -10 1 2 3 4 5 6 7 8 9 altitude/1000m Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 3 / 33

  8. Introduction 1912: Victor Hess discovers cosmic rays Two main questions what are they? what are their sources? Hess’ and Kolhoerster’s results: 80 60 excess ionization 40 20 0 -10 1 2 3 4 5 6 7 8 9 altitude/1000m Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 3 / 33

  9. Introduction What do we know 100 years later? solar modulation → LHC ⇑ Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 4 / 33

  10. Introduction What do we know 100 years later? solar modulation → Basic information: energy density ρ cr ∼ 0 . 8 eV/cm 3 non-thermal power-law spectrum, dN/dE ∝ 1 /E α nuclear composition, few e − , γ ∼ 10 18 eV isotropic flux for E < LHC ⇑ Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 4 / 33

  11. Introduction The CR– γ – ν connection: HE neutrinos and photons are unavoidable byproducts of HECRs astrophysical models, cosmogenic flux: ◮ ratio I ν /I p determined by nuclear composition of UHECRs and source evolution ◮ ratio I ν /I γ determined by isospin Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

  12. Introduction The CR– γ – ν connection: HE neutrinos and photons are unavoidable byproducts of HECRs astrophysical models, cosmogenic flux: ◮ ratio I ν /I p determined by nuclear composition of UHECRs and source evolution ◮ ratio I ν /I γ determined by isospin astrophysical models, direct flux: ◮ model dependent fluxes: ∝ target density, . . . Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

  13. Introduction The CR– γ – ν connection: HE neutrinos and photons are unavoidable byproducts of HECRs astrophysical models, cosmogenic flux: ◮ ratio I ν /I p determined by nuclear composition of UHECRs and source evolution ◮ ratio I ν /I γ determined by isospin astrophysical models, direct flux: ◮ model dependent fluxes: ∝ target density, . . . top-down DM models: ◮ large fluxes with I ν ≫ I p ◮ ratio I ν /I p fixed by fragmentation Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

  14. Introduction The CR– γ – ν connection: HE neutrinos and photons are unavoidable byproducts of HECRs astrophysical models, cosmogenic flux: ◮ ratio I ν /I p determined by nuclear composition of UHECRs and source evolution ◮ ratio I ν /I γ determined by isospin astrophysical models, direct flux: ◮ model dependent fluxes: ∝ target density, . . . top-down DM models: ◮ large fluxes with I ν ≫ I p ◮ ratio I ν /I p fixed by fragmentation prizes to win: ◮ astronomy above 100 TeV ◮ identification of CR sources ◮ determination galactic–extragalactic transition of CRs ◮ test/discover new particle physics Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

  15. Introduction What is the bonus of HE neutrino astronomy? astronomy with VHE photons restricted to few Mpc: 22 radio 20 18 log10(E/eV) 16 photon horizon γγ → e + e − CMB 14 IR 12 10 kpc 10kpc 100kpc Mpc 10Mpc 100Mpc Gpc Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 6 / 33

  16. Introduction What is the bonus of HE neutrino astronomy? astronomy with VHE photons restricted to few Mpc: 22 radio 20 18 log10(E/eV) 16 photon horizon γγ → e + e − CMB 14 IR ambiguity: leptonic/hadronic origin 12 10 kpc 10kpc 100kpc Mpc 10Mpc 100Mpc Gpc Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 6 / 33

  17. Introduction HE neutrino astronomy vs UHECRs? 22 proton horizon 20 18 log10(E/eV) 16 photon horizon γγ → e + e − CMB 14 IR 12 Virgo ⇓ 10 kpc 10kpc 100kpc Mpc 10Mpc 100Mpc Gpc Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 7 / 33

  18. Introduction HE neutrino astronomy vs UHECRs? 22 proton horizon 20 18 log10(E/eV) 16 photon horizon γγ → e + e − CMB 14 IR ◮ large statistics of UHECRs, well-suited horizon scale 12 ◮ but no conclusive evidence that qB is small enough Virgo ⇓ 10 kpc 10kpc 100kpc Mpc 10Mpc 100Mpc Gpc Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 7 / 33

  19. Introduction What is the bonus of HE neutrino astronomy? Neutrino astronomy: small σ νN ∼ 0 . 1 ◦ − 1 ◦ large λ ν but also “large” uncertainty � δϑ � > Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 8 / 33

  20. Introduction What is the bonus of HE neutrino astronomy? Neutrino astronomy: small σ νN ∼ 0 . 1 ◦ − 1 ◦ large λ ν but also “large” uncertainty � δϑ � > small event numbers: ∼ 1 /yr for PAO or ICECUBE 10 3 CR flux j(E) E 2 [eV cm -2 s -1 sr -1 ] 10 2 max 0.2 10 WB 1 10 -1 10 16 10 17 10 18 10 19 10 20 10 21 10 22 E [eV] ⇒ identification of steady sources challenging Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 8 / 33

  21. Introduction What is the bonus of HE neutrino astronomy? Neutrino astronomy: small σ νN ∼ 0 . 1 ◦ − 1 ◦ large λ ν but also “large” uncertainty � δϑ � > small event numbers: ∼ 1 /yr for PAO or ICECUBE 10 3 CR flux j(E) E 2 [eV cm -2 s -1 sr -1 ] 10 2 max 0.2 10 WB 1 10 -1 10 16 10 17 10 18 10 19 10 20 10 21 10 22 E [eV] ⇒ identification of steady sources challenging correlation with AGN flares, GRBs diffuse flux detected first Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 8 / 33

  22. Introduction IceCube [ ] Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 9 / 33

  23. Introduction IceCube:Top View Grid North 100 m AMANDA Counting House South Pole SPASE-2 IceCube Dome Skiway Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 10 / 33

  24. Introduction IceTop AMANDA South Pole IceCube Skiway 80 Strings 4800 PMT 1400 m 2400 m Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 10 / 33

  25. Introduction Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 10 / 33

  26. Icecube events Icecube: 2 events presented at Neutrino 2012 2 cascade events close to E min = 10 15 eV, bg = 0.14 Two events passed the selection criteria 2 events / 672.7 days - background (atm. � + conventional atm. � ) expectation 0.14 events preliminary p-value: 0.0094 (2.36 ��� Run118545-Event63733662 Run119316-Event36556705 August 9 th 2011 Jan 3 rd 2012 NPE 9.628x10 4 NPE 6.9928x10 4 Number of Optical Sensors 354 Number of Optical Sensors 312 CC/NC interactions in the detector MC 8 Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 11 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend