high definition x ray polarimetry
play

High-Definition X-Ray Polarimetry Berit Marx IOQ - PowerPoint PPT Presentation

High-Definition X-Ray Polarimetry Berit Marx IOQ Friedrich-Schiller-Universit at Jena Helmholtz-Institut Jena Workshop - EMMI I.Uschmann, S. H ofer, R. Loetzsch, O. Wehrhan, E. F orster, M. Kaluza, G.G. Paulus, C. Detlefs, T. Roth,


  1. High-Definition X-Ray Polarimetry Berit Marx IOQ Friedrich-Schiller-Universit¨ at Jena Helmholtz-Institut Jena Workshop - EMMI I.Uschmann, S. H¨ ofer, R. Loetzsch, O. Wehrhan, E. F¨ orster, M. Kaluza, G.G. Paulus, C. Detlefs, T. Roth, J. H¨ artwig Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 1 / 36

  2. Outline Motivation 1 Principles 2 Kinematical theory of diffraction Dynamical theory of diffraction Polarimetry Measurements 3 Polarization measurements at the ESRF Grenoble Summary 4 Outlook 5 Acknowledgement 6 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 2 / 36

  3. Motivation Vacuum birefringence induced by intense laser fields Experimental setup for the verification of vacuum birefringence: vacuum laser pulse high electro- magnetic field X-ray source detector polarizer analyzer T. Heinzel et al. 2006 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 3 / 36

  4. Motivation Vacuum birefringence induced by intense laser fields resulting ellipticity δ a = 2 α z 0 I 0 δ 2 ∼ κ 15 λ I C b T. Heinzel et al. 2006 Ellipticity, which would be possible I 0 -peak intensity with the petawatt laser system at λ -probe pulse wavelength Jena: z 0 -Rayleigh length I 0 = 10 22 W α -fine-structure constant cm 2 λ = 0 . 08 nm κ -correction factor z 0 = 25 µ m I C -critical intensity ⇒ δ 2 = 4 . 8 · 10 − 10 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 4 / 36

  5. Principles Kinematical theory of diffraction Outline Motivation 1 Principles 2 Kinematical theory of diffraction Dynamical theory of diffraction Polarimetry Measurements 3 Polarization measurements at the ESRF Grenoble Summary 4 Outlook 5 Acknowledgement 6 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 5 / 36

  6. Principles Kinematical theory of diffraction Kinematical theory crystal k no change of wavenumber in the crystal r B R' decrease of intensity of the R primary beam is neglected k o no secondary scattering Q ⇒ only valid for mosaic fig.: Diffraction crystals and thin crystals Intensity of the diffracted beam at the observation place = | A 0 | 2 2 � � K ) ∼ e i ( � G − � I ( � K = � � k − � � K ) � r d � �� G ρ � r with k 0 � � � R ′ 2 G � � Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 6 / 36

  7. Principles Kinematical theory of diffraction Diffraction condition Laue condition � G = � k − � k 0 k G k o Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 7 / 36

  8. Principles Kinematical theory of diffraction Diffraction condition Bragg’s law 2 d hkl sin ( θ B hkl ) = n λ Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 8 / 36

  9. Principles Dynamical theory of diffraction Outline Motivation 1 Principles 2 Kinematical theory of diffraction Dynamical theory of diffraction Polarimetry Measurements 3 Polarization measurements at the ESRF Grenoble Summary 4 Outlook 5 Acknowledgement 6 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 9 / 36

  10. Principles Dynamical theory of diffraction Dynamical theory of diffraction solves Maxwell’s equations for the propagation of electromagnetic waves in the crystal ⇒ is valid for perfect crystals Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 10 / 36

  11. Principles Dynamical theory of diffraction Dynamical theory of diffraction solves Maxwell’s equations for the propagation of electromagnetic waves in the crystal ⇒ is valid for perfect crystals L a P L o k K o K h nk L a k O H k o k h O H fig.: —Dispersion surface Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 10 / 36

  12. Principles Dynamical theory of diffraction Integrated intensity of a perfect crystal Integrated intensity R σ/π = 8 R λ 2 | C | � | γ | � F h F h π Vsin (2 θ B ) fig.: Comparison of the rocking curves for · · · non-absorbing —-absorbing crystals Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 11 / 36

  13. Principles Dynamical theory of diffraction Integrated intensity of a perfect crystal Integrated intensity R σ/π = 8 R λ 2 | C | � | γ | � F h F h π Vsin (2 θ B ) Polarization factor � 1 for σ C = cos 2 θ B for π ⇒ Suppression of the fig.: Comparison of the rocking curves for · · · non-absorbing π -polarization at θ B = 45 ◦ —-absorbing crystals Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 11 / 36

  14. � Principles Dynamical theory of diffraction Integrated intensity of a perfect crystal Integrated intensity 1,0 σ ������������� � θ � ���� R σ/π = 8 R λ 2 | C | � 0,8 � θ � ���� | γ | � � θ � ���� F h F h π Vsin (2 θ B ) � θ � ���� 0,6 π ������������� I/I 0 � θ � ���� 0,4 Polarization factor � θ � ���� � θ � ���� 0,2 � θ � ���� � 1 for σ C = 0,0 cos 2 θ B for π 0 1 2 3 4 5 ∆θ ��� ⇒ Suppression of the fig.: Comparison of rocking curves for different π -polarization at θ B = 45 ◦ Bragg angles Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 12 / 36

  15. Principles Polarimetry Outline Motivation 1 Principles 2 Kinematical theory of diffraction Dynamical theory of diffraction Polarimetry Measurements 3 Polarization measurements at the ESRF Grenoble Summary 4 Outlook 5 Acknowledgement 6 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 13 / 36

  16. Principles Polarimetry Polarization purity Transmitted flux � � I n T ( π,σ ) = ( π,σ ) ( θ, E 0 + ǫ ) B ( θ, E 0 + ǫ ) d θ d ǫ B ( θ, E 0 + ǫ ) - spectral brilliance - Bragg energy E 0 θ - angle arround θ B (Bragg angle) I ( π,σ ) ( θ, E 0 + ǫ ) - single-crystal reflectivity n - number of reflections inside the channel-cut Polarization purity δ 0 = T π T σ Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 14 / 36

  17. Principles Polarimetry Suppression of π -polarization Si 333, Cu K α , θ B = 47 . 5 ◦ 1 π -polarization σ -polarization 1reflection 1reflection 4reflections 4reflections 0,1 0,01 I/I 0 1E-3 1E-4 1E-5 -6 -4 -2 0 2 4 6 8 10 12 θ - θ B ["] fig.: multiple reflections δ 1 = 2 , 91 · 10 − 2 ↔ δ 4 = 2 , 20 · 10 − 4 Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 15 / 36

  18. Principles Polarimetry Multiple scattering k G k o k N N fig.: Appearance of multiple scattering demonstrated at the Ewald sphere Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 16 / 36

  19. Principles Polarimetry Umweganregungen k G U k o k N N fig.: Appearance of indirect reflections demonstrated at the Ewald sphere Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 17 / 36

  20. Principles Polarimetry Multiple scattering n 1,0 0,8 0,6 incident diffracted 0,4 beam beam 0,2 11-2 0,0 θ B -0,2 φ -0,4 -0,6 -0,8 -1,0 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1-10 fig.: Kossel pattern of a (333) silicon crystal, CuK α , E=8.05keV fig.: Kossel cone Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 18 / 36

  21. Principles Polarimetry Multiple scattering n 1,0 0,8 0,6 incident diffracted 0,4 beam beam 0,2 11-2 0,0 θ B -0,2 φ φ -0,4 -0,6 -0,8 -1,0 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1-10 fig.: Kossel pattern of a (333) silicon crystal, CuK α , E=8.05keV fig.: Kossel cone Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 18 / 36

  22. Principles Polarimetry Umweganregungen 1,0 0,8 0,6 0,4 0,2 001 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 010 fig.: Kossel pattern of a (400) silicon crystal, FeK α , E=6.4keV, θ B = 45 , 48 ◦ Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 19 / 36

  23. Principles Polarimetry Umweganregungen 1,0 0,8 0,6 0,4 0,2 11-2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1-10 fig.: Kossel pattern of a (333) silicon crystal, CuK α , E=8.05keV, θ B = 47 , 5 ◦ Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 20 / 36

  24. Principles Polarimetry Umweganregungen 1,0 0,8 0,6 0,4 0,2 11-2 0,0 -0,2 -0,4 -0,6 -0,8 -1,0 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1-10 fig.: Kossel pattern of a (888) silicon crystal, AgK α , E=22.2keV, θ B = 45 , 53 ◦ Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 21 / 36

  25. Principles Polarimetry Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 22 / 36

  26. Principles Polarimetry Polarimeter setup: polarizer goniometer head wing channel-cut slit1 mirror Goniometer (Bragg angle) goniometer (Bragg angle) Berit Marx (FSU) High-Definition X-Ray Polarimetry Darmstadt 08.06.2010 23 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend