heavy tailed random matrices and the poisson weighted in
play

Heavy-tailed random matrices and the Poisson Weighted In fi nite Tree - PowerPoint PPT Presentation

Heavy-tailed random matrices and the Poisson Weighted In fi nite Tree Charles Bordenave CNRS & University of Toulouse Joint work with Pietro Caputo (Roma III) and Djalil Chafa (Paris XI). 1 PART I : RANDOM MATRICES SPECTRAL MEASURE


  1. Heavy-tailed random matrices and the Poisson Weighted In fi nite Tree Charles Bordenave CNRS & University of Toulouse Joint work with Pietro Caputo (Roma III) and Djalil Chafa¨ ı (Paris XI). 1

  2. PART I : RANDOM MATRICES

  3. SPECTRAL MEASURE Let X = ( X ij ) 1 ≤ i,j ≤ n be a n × n complex matrix. Let λ 1 , · · · , λ n be its eigenvalues, the spectral measure of X is n µ X = 1 � δ λ k . n k =1 - (random hermitian) : the array ( X ij ) i ≥ j ≥ 1 is i.i.d., X ij = ¯ X ji , - (random non-hermitian) : the array ( X ij ) i,j ≥ 1 is i.i.d.. = ⇒ As n goes to in fi nity, does the spectral measure converge ?

  4. WIGNER’S SEMI-CIRCULAR LAW Theorem 1. If E X 11 = 0 , E | X 11 | 2 = 1 and A n = X/ √ n, then, almost surely, µ A n = ⇒ µ sc , √ 1 4 − x 2 dx . where µ sc ( dx ) = 2 π

  5. GIRKO’S CIRCULAR LAW Theorem 2 (Tao & Vu (2008)) . If E X 11 = 0 , E | X 11 | 2 = 1 and A n = X/ √ n, then, almost surely, µ A n = ⇒ Unif ( D ) . where Unif ( D ) is the uniform distribution on the unit complex disc. = ⇒ Found by Girko, earlier versions due to Edelman, Bai, Pan & Zhou, G¨ otze & Tikhomirov ...

  6. HEAVY-TAILED ENTRIES We now assume that P ( | X 11 | > t ) ∼ t − α for some 0 < α < 2 . De fi ne A n = X/n 1 /α , = ⇒ In the hermitian and non-hermitian cases, does µ A n converge to a measure µ ?

  7. HERMITIAN CASE Theorem 3 (Ben Arous & Guionnet, 2008) . There exists a probability measure µ bc depending only on α such that, with the above assumptions, almost surely, µ A n = ⇒ µ bc . = ⇒ Found non-rigourously by Bouchaud-Cizeau (1994).

  8. PROPERTIES OF THE LIMIT MEASURE Theorem 4. For all 0 < α< 2 , the probability measure µ bc (i) is symmetric and has a bounded density f bc on R , � 1 � � Γ ( 1 − α 2 ) α (ii) f bc (0) = 1 1 + 2 � π Γ , α Γ ( 1+ α 2 ) (iii) f bc ( t ) ∼ t →∞ α 2 t − α − 1 . = ⇒ Summarizes properties obtained by Ben Arous & Guionnet, Belinschi, Dembo & Guionnet, Bordenave, Caputo & Chafa¨ ı .

  9. NON-HERMITIAN CASE Theorem 5. Assume that X 11 has a bounded density on R or C , and is asymptotically radial : � X 11 � � lim | X 11 | ∈ · � | X 11 | ≥ t = θ, t →∞ P � for some probability distribution θ on S 1 . Then, there exists a probability measure µ depending only on α such that, with the above assumptions, almost surely, µ A n = ⇒ µ.

  10. PROPERTIES OF THE LIMIT SPECTRAL MEASURE Theorem 6. The measure µ has radial bounded density µ ( dz ) = f ( | z | ) dz , where 2 Γ(1 + 2 α ) 2 Γ(1 + α 2 ) f (0) = 1 α , 2 π Γ(1 − α 2 ) α and as r → ∞ f ( r ) ∼ c r 2( α − 1) e − α 2 r α .

  11. PART II : OBJECTIVE METHOD AND LOCAL OPERATOR CONVERGENCE

  12. HERMITIAN CASE : SPECTRAL MEASURE AT A VECTOR There exists a probability measure on R such that, for all t integers, � x t dµ ( k ) ( e k , A t n e k ) = A n , n n µ A n = 1 µ ( k ) µ ( k ) � � | ( e k , u i ) | 2 δ λ i . A n = and A n n k =1 i =1 The spectral measure at a vector is well de fi ned for all self-adjoint operators.

  13. HERMITIAN CASE : REDUCTION TO LOCAL CONVERGENCE = ⇒ By exchangeability, we get E µ A n = E µ (1) A n = ⇒ From basic concentration inequality, µ A n − E µ A n converges a.s. to 0 . ⇒ It is enough to get the convergence of µ (1) = A n .

  14. HERMITIAN CASE : LOCAL OPERATOR CONVERGENCE We look for a random operator A de fi ned in L 2 ( V ) for some countable set V such that there exists a sequence of bijections σ n : V → N , ø ∈ V , σ n (ø) = 1 and, for all φ ∈ L 2 ( V ) with compact support, weakly, σ − 1 n A n σ n φ → Aφ. If A is self-adjoint, then it would imply that µ (1) A n → µ (ø) A .

  15. NON-HERMITIAN CASE The above strategy does not work. The spectral measure at a vector does not exist for non-normal matrices. The local operator convergence is not suf fi cient.     0 1 0 0 · · · 0 1 0 0 · · ·     0 0 1 0 · · · 0 0 1 0 · · ·         .   vs       · · · · · ·             0 · · · 0 0 0 1 · · · 0 0 0 An additional ingredient is needed. (For the moment, we skip this very important part).

  16. PART III : CONVERGENCE TO POISSON WEIGHTED INFINITE TREE

  17. ALDOUS’ PWIT Let V = ∪ k ∈ N N k with N 0 = ø . Consider the in fi nite tree on V : ø · · · 2 4 1 3 · · · · · · 1 , 2 1 , 3 1 , 1 · · · · · · 1 , 1 , 3 1 , 1 , 4 1 , 1 , 1 1 , 1 , 2

  18. ALDOUS’ PWIT Let ( Z v ) v ∈ V be iid Poisson processes of intensity λ on R + , Z v = { 0 ≤ ζ v 1 ≤ ζ v 2 ≤ · · · } ø · · · ζ 1 ζ 2 ζ 3 ζ 4 2 4 1 3 · · · ζ 21 ζ 11 · · · ζ 12 ζ 22 ζ 13 ζ 23 1 , 2 1 , 3 1 , 1 · · · ζ 111 ζ 112 · · · ζ 113 ζ 114 1 , 1 , 3 1 , 1 , 4 1 , 1 , 1 1 , 1 , 2

  19. GRAPHIC REPRESENTATION OF A MATRIX We think of the matrix A n as an oriented weighted graph on n vertices. A 11 A 22 � A 12 � 2 1 A 21 � A 14 � � A 23 � A 41 A 32 � A 24 � A 13 � � A 42 A 31 � A 34 � 3 4 A 43 A 44 A 33

  20. ORDERED STATISTICS �� A 11 �� � A 12 � A 1 n � � , , · · · , The vector is reordered non-increasingly in A 11 A 21 A n 1 �� A 1 σ (1) � � A 1 σ 1 (2) � � A 1 σ ( n ) �� , , · · · , A σ (1)1 A σ (2)1 A σ ( n )1 with � A 1 σ (1) � � A 1 σ (2) � � � 1 ≥ � � 1 ≥ · · · . A σ (1)1 A σ (2)1 = ⇒ We restrict ourselves to non-hermetian case and non-negative random variables.

  21. CONVERGENCE OF ORDERED STATISTICS �� A 1 σ (1) � � A 1 σ (2) � � A 1 σ ( n ) �� , , · · · , A σ (1)1 A σ (2)1 A σ ( n )1 converges to �� � � � � ε 1 ε 2 − 1 − 1 ζ , ζ , · · · , α α 1 2 1 − ε 1 1 − ε 2 where ( ζ k ) k ≥ 1 , ζ 1 ≤ ζ 2 ≤ · · · , is a Poisson point process of intensity Λ( dx ) = 21 I x> 0 dx and ( ε k ) iid Ber(1 / 2) random variables.

  22. CONVERGENCE OF ORDERED STATISTICS For fi xed i , the vector �� A jσ ( i ) �� A σ ( i ) j j � =1 is reordered non-increasingly. It converges again to �� � � � � ε i 1 ε i 2 − 1 − 1 ζ i 1 , ζ i 2 , · · · , α α 1 − ε i 1 1 − ε i 2 where ( ζ ik ) k ≥ 1 are independent Poisson processes of intensity Λ and ( ε ik ) i,k iid Ber(1 / 2) r.v.

  23. LOCAL CONVERGENCE TO ALDOUS’ PWIT ø 1 → ø · · · � ε 1 � ε 2 − 1 − 1 � ε 3 � ε 4 − 1 − 1 � � σ ( i ) → i ζ ζ � � α α ζ ζ α α 1 2 1 − ε 1 1 − ε 2 3 4 1 − ε 3 1 − ε 4 · · · 2 4 1 3 � ε 21 − 1 · · · � ε 11 � − 1 ζ α � ζ 21 � ε 22 α 1 − ε 21 · · · 11 � ε 12 1 − ε 11 − 1 − 1 � � ζ ζ α α 12 � ε 13 � ε 23 22 1 − ε 12 − 1 1 − ε 22 − 1 � � ζ ζ α α 13 23 1 − ε 13 1 − ε 23 A 11 A 22 � A 12 � 2 1 , 2 1 , 3 1 1 , 1 A 21 · · · � ε 111 − 1 � ζ � A 14 � α � A 23 � 111 1 − ε 111 A 41 A 32 � ε 112 − 1 � ζ α · · · � A 24 � A 13 � � 112 � ε 113 1 − ε 112 − 1 A 42 A 31 � ε 114 � − 1 ζ α � ζ 113 1 − ε 113 α 114 1 − ε 114 − → � A 34 3 � 1 , 1 , 3 1 , 1 , 4 4 1 , 1 , 1 1 , 1 , 2 A 43 A 44 A 33 n →∞

  24. OPERATOR ON THE PWIT De fi ne the operator on compactly supported function of L 2 ( V ) , − 1 − 1 � Aδ v = (1 − ε vk ) ζ vk δ vk + ε v ζ α α δ a ( v ) , v k ≥ 1 where a ( v ) is the ancestor of v � = ø . = ⇒ There exists a sequence of bijections σ n : V → N , ø ∈ V , σ n (ø) = 1 and, for all φ ∈ L 2 ( V ) with compact support, weakly, σ − 1 n A n σ n φ → Aφ.

  25. HERMITIAN CASE : OPERATOR ON THE PWIT In the hermitian case, the operator is de fi ned similarly, we simply forget about, the ε � v s : − 1 − 1 � Aδ v = ζ vk δ vk + ζ δ a ( v ) . α α v k ≥ 1 → Again, for all φ ∈ L 2 ( V ) with compact support, weakly, σ − 1 − n A n σ n φ → Aφ. Theorem 7. With probability one, the operator A is (essentially) self-adjoint. ⇒ As a corollary, we obtain the convergence of µ A n to µ bc := E µ (ø) = A .

  26. HERMITIAN CASE : RECURSIVE DISTRIBUTIONAL EQUATION The resolvent formula and the recursive structure of the PWIT implies a RDE for, z ∈ C + = { z ∈ C : � ( z ) > 0 } , g ø ( z ) := � δ ø , ( A − z ) − 1 δ ø � � − 1 � d � g ø = − z + ξ k g k , k ∈ N where g ø , ( g k ) k ∈ N are i.i.d. independent of { ξ k } k ∈ N , a independent Poisson point 2 x − α process of R + with intensity α 2 − 1 dx .

  27. RECURSIVE DISTRIBUTIONAL EQUATION If S is a positive α/ 2 -stable random variable, α d 2 � α S. ξ k g k = E [ g ø ] 2 k ∈ N α 2 = ⇒ The RDE can be solved in terms of a scalar fi xed point equation for E [ g ø ] 2 α . = ⇒ Since g is the Cauchy-Stieltjes transform of µ ø , we deduce the properties of µ bc = E µ (ø) A .

  28. PART IV : CONVERGENCE IN THE NON-HERMITIAN CASE

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend