hazardous backward in time con tinuation in nonlinear
play

HAZARDOUS BACKWARD IN TIME CON- TINUATION IN NONLINEAR PARABOLIC - PowerPoint PPT Presentation

HAZARDOUS BACKWARD IN TIME CON- TINUATION IN NONLINEAR PARABOLIC EQUATIONS AND DEBLURRING NON- LINEARLY BLURRED IMAGERY . by ALFRED S. CARASSO, ACMD Identify sources of groundwater pollution Solve Advection Dispersion Equation back- ward in


  1. HAZARDOUS BACKWARD IN TIME CON- TINUATION IN NONLINEAR PARABOLIC EQUATIONS AND DEBLURRING NON- LINEARLY BLURRED IMAGERY . by ALFRED S. CARASSO, ACMD

  2. Identify sources of groundwater pollution Solve Advection Dispersion Equation back- ward in time, given present state g ( x, y ) : C t = ∇ . { D ∇ C } − ∇ . { vC } , 0 < t ≤ T, C ( x, y, T ) = g ( x, y ) . (1)

  3. DEBLURRING HUBBLE GALAXY IMAGES Original Tadpole Deblurred Image Solve logarithmic diffusion equation back- ward in time, given blurred image g ( x, y ) : � � λ log { 1 + γ ( − ∆) β } w t = − w, 0 < t ≤ T, w ( x, y, T ) = g ( x, y ) . (2)

  4. BACKWARD PARABOLIC EQNS VERY ILL-POSED BACKWARD UNIQUENESS AND STABILITY ??? Linear or nonlinear parabolic equn w t = L w, t > 0. Let w 1 ( x, t ) , w 2 ( x, t ) be any two solutions. Let F ( t ) = � w 1 ( ., t ) − w 2 ( ., t ) � 2 ( L 2 norm) Logarithmic Convexity techniques lead to F ( t ) ≤ { F (0) } 1 − µ ( t ) { F ( T ) } µ ( t ) , 0 ≤ t ≤ T. H¨ older exponent µ ( t ) satisfies 0 ≤ µ ( t ) ≤ 1 , µ ( T ) = 1 , µ (0) = 0 , µ ( t ) > 0 for t > 0 , and µ ( t ) ↓ 0 as t ↓ 0. If solutions satisfy prescribed bound � w ( ., 0) � 2 ≤ M, then F (0) ≤ 2 M . Hence F ( T ) = 0 ⇒ F ( t ) = 0 on [0 , T ] . This implies Backward Uniqueness . Fix any small δ > 0. Then F ( T ) ≤ δ ⇒ F ( t ) ≤ 2 M 1 − µ ( t ) δ µ ( t ) on [0 , T ]. This implies Backward Stability.

  5. Precarious backward stability F ( t ) ≤ 2 M 1 − µ ( t ) δ µ ( t ) . Autonomous, selfadjoint ⇒ µ ( t ) = t/T . Otherwise, µ ( t ) sublinear in t , possibly with fast decay to zero. Behavior of Holder exponent in backward problems Autonomous, linear self adjoint problem Nonlinear problem w t = e ct w xx , 0 < x < π, w x (0 , t ) = w x ( π, t ) = 0 , t ≥ 0. µ ( t ) = { 1 − exp( ct ) } / { 1 − exp( cT ) } , 0 ≤ t ≤ T .

  6. w t = 0 . 05 � e (0 . 025 x +0 . 05 t ) w x � x + { sin(4 πx ) } w x , t ≥ 0 , w red ( x, 0) = e 3 x sin 2 (3 πx ) , w ( − 1 , t ) = w (1 , t ) = 0 . Effective non uniqueness in non self adjoint case t=0 t=0 t=1 Either red or green initial values at t=0, terminate on black curve at t=1 to within 1.4E−3 pointwise, and L 2 relative error = 2.3E−4.

  7. THE FUNNEL CONJECTURE FUNNEL EFFECT IN PARABOLIC EQUATIONS

  8. EXPLORE 2D BACKWARD CONTINUATION Nonlinear parabolic initial value problem on Ω × (0 , T ) w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x , + b ( wcos 2 w ) w y , w ( x, y, 0) = g ( x, y ). Ω square 0 < x, y < 1 , T > 0, Zero Neumann on ∂ Ω. q ( x, y, t ) = e 10 t (1 + 5 e 2 y sinπx ). r ( w ) = exp(0 . 025 w ) , γ = 8 . 5 × 10 − 4 , a, b constants ≥ 0 , yet to be prescribed. FIND INTERESTING INITIAL VALUES g ( x, y ) ????

  9. EXAMPLES OF DATA More interesting data Gaussian inital data

  10. MORE EXAMPLES OF DATA 8 bit images with values between 0 and 255. Pyramids image MRI Brain image

  11. NONLINEAR PARABOLIC IMAGE BLURRING w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x + b ( wcos 2 w ) w y Forward problem well-posed in L 2 (Ω). For any initial value w ( x, y, 0) = g ( x, y ), unique solution w ( x, y, T ) ex- ists at time T . Nonlinear solution operator Λ T well- defined on L 2 (Ω) by formula Λ T g ( x, y ) = w ( x, y, T ) . w ( x, y, T ) ∈ very restricted class of smooth functions. Restrict attention to 256 × 256 images. Using centered space differencing, with ∆ x = ∆ y = 1 / 256 , ∆ t = 3 . 0 E − 7, march forward 400 time steps to T = 1 . 2 E − 4, using following explicit finite difference scheme W n + ∆ tγR ( W n ) ∇ . { Q n ∇ W n } + aW n W n W n +1 = x b ( W n cos 2 W n ) W n + y , n = 0 , 399 , W 0 = g ( x, y ) . (3) Discrete nonlinear solution operator Λ T d well-defined d W 0 = W 400 . on 256 × 256 images by formula Λ T

  12. NONLINEAR BACKWARD CONTINUATION Very little known about nonlinear multidimensional backward in time parabolic equations. Computation of such problems lies in uncharted waters . w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x + b ( wcos 2 w ) w y Solution operator Λ T g ( x, y ) = w ( x, y, T ), defined on L 2 . VanCittert iterative procedure Originated in Spectroscopy in 1930’s. 1D Linear con- volution integral equations, with explicitly known ker- nels, assumed to have positive Fourier transforms. With f ( x, y ) ≈ w ( x, y, T ), fixed 0 < λ < 1, consider h m +1 ( x, y ) = h m ( x, y )+ λ f ( x, y ) − Λ T h m ( x, y ) � � , m ≥ 1 , where h 1 ( x, y ) = λf ( x, y ). Convergence ⇒ Λ T h ∞ ( x, y ) = f ( x, y ) . Mathematically impossible with noisy data f ( x, y ) .

  13. Nevertheless, Van Cittert is valuable tool in large va- riety of 2D nonlinear backward equations. In many cases, L ∞ norm of residual, � f − Λ T h m � ∞ , decays quasi-monotonically to small value after a finite num- ber N of iterations, and h N ( x, y ) is useful approximation to w ( x, y, 0). Cases also exist where method fails !!! . VANCITTERT NONLINEAR DEBLURRING Given 256 × 256 blurred image f ( x, y ) ≈ w ( x, y, T ), use above centered difference scheme to do ∗ ∗ ∗ H m +1 = H m + λ f ( x, y ) − Λ T d H m � � , m ≥ 1 , ∗ ∗∗ where H 1 = λf ( x, y ). Here, Λ T d H m means marching ex- plicit difference scheme 400 time steps forward, using image H m ( x, y ) as initial data W 0 . Self-regularizing property of VanCittert Deblurring Iterative process recovers low frequency information in first several iterations. Many more iterations needed to recover high-frequency information. Interactively stopping iteration after finitely many steps, can recover deblurred image relatively free from noise. ( Unless method fails for that image !!! )

  14. Diagnostic image metrics L 1 and TV norms Blurring and deblurring experiments will use following norms to evaluate results � � (256) − 2 � 256 � f � 1 = x,y =1 | f ( x, y ) | , { f x ( x, y ) } 2 + { f y ( x, y ) } 2 � 1 / 2 . � ∇ f � 1 = (256) − 2 � 255 � x,y =1 Peak signal to noise image quality metric (PSNR) ASSUMES KNOWN IDEAL IMAGE k ( x, y ). Let h ( x, y ) be degraded version of ideal k ( x, y ), ∗ ∗ ∗ PSNR = − 20 log 10 {� h − k � 2 / 255 } ∗ ∗∗ . PSNR = ∞ if h ( x, y ) = k ( x, y ), and PSNR decreases monotonically as h ( x, y ) diverges from k ( x, y ).

  15. w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x + b ( wcos 2 w ) w y q ( x, y, t ) = e 10 t (1 + 5 e 2 y sinπx ). r ( w ) = exp(0 . 025 w ) , NONLINEAR PARABOLIC BLURRING OF SHARP MRI BRAIN IMAGE (B) Blur with a=b=0 (A) Original sharp image (C) Blur with a=1.25, b=0.6 Behavior in above nonlinear blurring � f � 1 � ∇ f � 1 Image PSNR Sharp A 59 3360 ∞ Blurred B 55 1740 25 Blurred C 55 1770 20

  16. w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x + b ( wcos 2 w ) w y NONLINEAR DEBLURRING OF MRI BRAIN IMAGE (B) Blur with a=b=0 After 100 VanCittert iterns. After 10 VanCittert iterns. (C) Blur with a=1.25, b=0.6 Behavior in above nonlinear deblurring � f � 1 � ∇ f � 1 Image PSNR Deblurred B 59 2980 34 Deblurred C 63 4780 17

  17. w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x + b ( wcos 2 w ) w y NONLINEAR PARABOLIC BLURRING OF SHARP FACE IMAGE (D) Original sharp image (F) Blur with a=0.83, b=0.6 (E) Blur with a=0, b=0.6 Behavior in above nonlinear blurring � f � 1 � ∇ f � 1 Image PSNR Sharp D 107 3100 ∞ Blurred E 101 1580 24 Blurred F 101 1550 20

  18. w t = γr ( w ) ∇ . { q ( x, y, t ) ∇ w } + aww x + b ( wcos 2 w ) w y NONLINEAR DEBLURRING OF FACE IMAGE (E) Blur with a=0, b=0.6 After 100 VanCittert iterns. After 20 VanCittert iterns. (F) Blur with a=0.83, b=0.6 Behavior in above nonlinear deblurring � f � 1 � ∇ f � 1 Image PSNR Deblurred E 106 2580 29 Deblurred F 112 5800 18

  19. � | w | w x + d ( wcos 2 w ) w y w t = γs ( w ) ∇ . { q ( x, y, t ) ∇ w } + c s ( w ) = 1 . 0 + 0 . 00125 w 2 , q = e 10 t (1 + 5 e 2 y sinπx ). NONLINEAR PARABOLIC BLURRING OF SHARP CARRIER IMAGE (G) Original sharp image (I) Blur with c=2.5, d=1.5 (H) Blur with c=2.5, d=0.3 Behavior in above nonlinear blurring � f � 1 � ∇ f � 1 Image PSNR Sharp G 139 4760 ∞ Blurred H 134 1720 20 Blurred I 134 1770 20

  20. � | w | w x + d ( wcos 2 w ) w y w t = γs ( w ) ∇ . { q ( x, y, t ) ∇ w } + c NONLINEAR DEBLURRING OF CARRIER IMAGE (H) Blur with c=2.5, d=0.3 After 100 VanCittert iterns. (I) Blur with c=2.5, d=1.5 After 100 VanCittert iterns. Behavior in above nonlinear deblurring � f � 1 � ∇ f � 1 Image PSNR Deblurred H 137 3700 23 Deblurred I 141 7700 18

  21. � | w | w x + d ( wcos 2 w ) w y w t = γs ( w ) ∇ . { q ( x, y, t ) ∇ w } + c DEBLURRING CARRIER IMAGE WITH FALSE VALUES Use false c=2.5, d=0.3, to deblur After 100 VanCittert iterations image blurred with c=2.5, d=1.5. FAILED BLIND DECONVOLUTION EXPERIMENT

  22. Blind deconvolution of KITT PEAK M51 image After Linnik deblur Original M51

  23. LINEAR NONSELFADJOINT PARABOLIC PDE w t = γr ∇ . { q ( x, y, t ) ∇ w } + aw x + bw y q = e 10 t (1 + 5 e 2 y sinπx ) r = 30 , a = 65 , b = 35. LINEAR NONSELFADJOINT PARABOLIC BLURRING Blurred Sydney image Original sharp Sydney image

  24. LINEAR NONSELFADJOINT PARABOLIC PDE w t = γr ∇ . { q ( x, y, t ) ∇ w } + aw x + bw y q = e 10 t (1 + 5 e 2 y sinπx ) r = 30 , a = 65 , b = 35. LINEAR NONSELFADJOINT PARABOLIC DEBLURRING Blurred Sydney image After 20 VanCittert iterations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend