hadronisation models vs data
play

Hadronisation: Models vs. Data Klaus Hamacher, Bergische Univ. - PowerPoint PPT Presentation

Hadronisation: Models vs. Data Klaus Hamacher, Bergische Univ. Wuppertal, DELPHI Introduction Remarks on Tuning Models compared to Data (shapes, incl. & ident. hadrons., rates, E-dependence, heavy qs, resonances, baryons, soft


  1. Hadronisation: Models vs. Data Klaus Hamacher, Bergische Univ. Wuppertal, DELPHI ● Introduction ● Remarks on Tuning ● Models compared to Data (shapes, incl. & ident. hadrons., rates, E-dependence, heavy q´s, resonances, baryons, soft γ ´s, gluons<->quarks, Bose Einstein FSI) ● Summary

  2. Introduction At LHC/pp interactions: intricate event structure: PDF´s, ISR, multiple interactions, FSR, hadronisation, .... -> fix fragmentation mainly using e + e - data

  3. Model Pieces (e + e - ) Z-qq Decays couplings Data (BR´s) ME ........ PS FSI, CR Fragmentation Theoretically Models “understood” Conservation laws, theory guided models

  4. Main Parameters many parameters less parameters fragment. functions α s (M Z ), α s (p t ), p t cut flavour composition, # baryons, # resonances Model pieces strongly correlated due to splitting processes: partonic splittings - fragmentation splittings - decays

  5. HERWIG Parameters (a la ALEPH) PS params for heavy clusters decay Eur.Phys.J. C48(2006)685 Few parameters for general fragmentation in HERWIG !

  6. How to Fix Model Parameters Require description of data : measured hadrons ➢ need complete model (from PDF ... to observed hadrons) ➢ need corrected data Else no proper comparison possible !

  7. How to Tune ● generate many event samples using random MC model param. sets (use physical parameters e.g. α s instead of Λ ); ● interpolate between samples -> parameterisation(MC param.) (2 nd order multidimensional polynomial with correlations); ● fit analytic parameterisation to data -> best MC param.; regard standard fitting rules; ● if optimum MC params. outside initial param. hypervolume, or volume too big iterate (we used 2 nd order interpolation!) ● for syst. errors exchange data distributions in the fit Strategy tested for many (15) parameters simultaneously

  8. Which Data Distributions ? Start from scaled momentum obvious physics motivation but check sensitivity of the data distribution ! Lund string frag. fct. parameters

  9. Which Data to Chose ! ● use only sensitive data ● try to avoid large correlation btw. parameters like in previous plot α s <> p t cut ; α s <> frag. fct. ; p t cut <> # resonances ● a tune is a fit => exclude badly described distributions e.g. only use baryon rate not baryon momentum spectrum. Problem if model describes data badly => model parameters ill-defined!

  10. Models vs Event Shapes 3 Jet Rate 4 Jet Rate For 3 Jet rate observables description ok (typical deviations O(3%)) -> 4 Jet rate obs. too low for Pythia, too high for Herwig, Ariadne ~ok

  11. Check ME/PS Matching Polar angle or energy dependence of 3-Jet observables ~ ok

  12. Check ME/PS matching Minor E- and/or cos Θ -dependence Z of 3- and 4-jet observables have to be described simultaneously! but: 200GeV little 4-jet data published OPAL (M. Ford) => also ALEPH data

  13. Inclusive Charged Hadrons All models underestimate scaled momentum - momentum out of the plane high correlation with multiplicity likely exptl. resolution (p t in ~ ok) feature of cluster fragmentation

  14. Identified Charged Hadrons Pythia: baryon frag. fct. different from meson f.f.! (extra suppression at high x)

  15. Identified Charged Hadrons leading particles flavour dependence h − D  h  /  D q h  D  h  Ratio b/uds c/uds  =  D q q q π p, Λ SLD neutral cluster decay π K p K +-0

  16. Identified Hadrons from BaBar (E< Υ 4s ) scaling violations all models too stiff NO scaling violations seen protons badly described (why) !

  17. Inclusive Charged Hadrons E-Dep. Models describe energy evolution (*10) for mesons but fail for protons

  18. Heavy Quark Fragmentation Pythia --- Bowler FF best: N Belle (& Cleo) 2 a exp − b m t f  z  = N B Charm 1  bm 2  1 − z   z z (a|b)=(0.12|0.58)  2 /nf.=188/60 Similar findings from SLD/LEP for b fragmentation Kartvelishvili Belle PRD 73, 032002 Peterson also Herwig ~ reasonable

  19. Heavy Quark Resonances pseudoscalar/vector/higher resonance (**) ratios ● b V/(V+P)~3/4 (spin counting expectation) N(B**)/N(B)~30% ● c V/(V+P)~0.6 many clear D** states seen at B-factories ● Compare model fits for light quarks P:V:(**) ~ 1:1:1 (V: tiny pref. long. polar.)

  20. Resonances – Light Flavours Abundant production of hadron resonances, also L=1 not expected in string fragmentation

  21. Rates: Data vs. Models Pythia Herwig Particle LEP measured 20,800 20,900 20,9±0,24 charged 9,2 ± 0,32 9,800 9,800 π 0 8,5 ± 0,1 8,550 8,800 π ± 1,025±0,013 1,090 1,040 K 0 1,115±0,03 1,120 1,060 K + 1,2±0,09 1,190 1,160   + ´ 0,49±0,05 0,485 0,390 p 0,186±0,008 0,175 0,184 Λ 0,064±0,033 0,0800 0,0770 Δ ++ 0,0055±0,0006 0,0035 0,0125 Ξ (1530) 0 General rates are well described (HERWIG !)

  22. Rates: Data vs. Models Pythia Herwig Particle LEP measured 0,146±0,012 0,160 - f 0 1,23±0,1 1,270 1,430 ρ 0 0,369±0,012 0,390 0,370 K* 0 0,357±0,039 0,390 0,370 K* + 1,016±0,065 1,320 0,910 ω 0,0963±0,0032 0,107 0,100 ϕ 0,25±0,08 0,290 0,260 f 2 (1270) 0,095±0,035 0,075 0,079 K* 2 (1430)0 0,0224±0,0062 0,026 0,030 f´ 2 (1525) 0,0225±0,0028 0 “0” Λ (1520) O(30%) of light quark primary mesons have L=1 Mass splitting for baryon smaller --> similar baryonic states?

  23. Rates – Light Flavour Resonances Phenomomenological parametrisation of meson rates: 〈 n 〉 − b M k ⋅ e  2J  1  ∝ • γ ~ 0,5 b~5/GeV k # s-q´s J spin suggests: ● democratic production of spin states ● production of higher mass resonances

  24. Baryon Resonances ? Baryon resonances (L>0) difficult to observe, exception, Λ (1520) Similarly simple parametrisation for baryons k ⋅ exp − bM 2  2I  1 〈 n 〉∝ **2 ! Λ (1520) OPAL Baryon resonances? similar Influence on proton rate at low E ?

  25. Direct Soft Photons expect ~0.02 γ per jet from Bremsstrahlung from hadrons (soft, small angle) observe 4-6 times more new result: γ multiplicity proportional to # of neutral hadrons meson dipole moment 2 d = ∑  q quark charge q i  r i i = 1  ≈ 10 ⋅ 2 2 d neutral d charged γ ´s may stem from quarks! -> see through hadronisation.

  26. Compare Gluon vs. Quark Splitting Kernels relate e+e- jet rates / Sudakovs Kernels α s  q  Γ q  qg  Q ,q  = 2C A ln  Q q − 3 4  2  y  R 2 =  q  q y α s  q  Γ g  g g  Q ,q  = 2C A ln  Q q − 11  q  y  = exp − ∫ dy'  q  y , y'  12   q y 0 Γ q  qg  Q ,q  = 2n f T F α s  q  3  q g q Similarly apply strategy to single gluon and quark jets in 3-jet events g =  g  y  q =  q  y  R 1 R 1

  27. Compare g vs. q Jet Rates/Splitting Prob. R 1  y  = N 1  y  N 1  y ⋅ N 1  y  1  D 1  y  = N tot  y %tage of non-split jets ~ differential splitting probability quarks take over at small y gluons split “earlier” (high y) described ok by models q / g  y  =  experim. q / g R 1  y 

  28. Compare g vs. q To NLL Splitting Kernels  g  y ≃ g  g g  g  q  D 1  g  y  D 1 ≃ g  g g  g  q  q q  q  y ≃ q  qg  D 1  q  q g q  y  D 1 splitting probability = kernel C A /C F Reason: Gluons deviate “earlier” (bigger y) from NLL expectation than quarks => quarks are valence particles => E-conservation Hadronisation sets in “earlier” for g than q

  29. Kernel diff. rate rate Compare g vs. q 1 higher splittings Gluons split “earlier” but 2 quarks keep up later g & q jet splitting probability about equal for high splittings 3 4

  30. RATIO g to q Ratio Kernel diff. rate 1 Exp. confirm PS picture 2 All jets dominated by gluon radiation 3 Expect differences (beyond colour factor) only for 4 leading particles

  31. 3 Jet Evts. -Gluon Fragmentation ALEPH, preliminary : 3-jet evts (D,0.01) at E cm =M Z of all topologies, photonic jets removed, =>890 000 evts. energy-ordering E jet1 > E jet2 > E jet3 , Jet 3 is 71% gluon Ratio MC/data ― JETSET --- ARIADNE MC low at x > 0.4 why ? (overall small effect) Delphi, Opal similar trend x p x p

  32. Gluons Gluon dom. Quark dom. tiny excess (2%) of fast neutal systems cmp. to model octett fragmentation ??? Sum of particle charges

  33. 3 Jet Evts. -Gluon Fragmentation Topology dependence of (symm.) 3-jet event multiplicity data-model~0,4 ~2% Gluon multiplicity very well described by analytic prediction => little room for qg differences (except leading particles)

  34. Gluon Fragmentation Identified H´s Models reasonably describe identified spectra

  35. Gluon Fragmentation ggg vs. qq CLEO compares quarkonium -> ggg (or gg) vs. continuum qqbar strong baryon ( Λ  why) enhancement excess in gg decays is about ¾ of ggg case baryon excess not concentrated at high x ϕ enhancement not seen at LEP (why)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend