statistical fragmentation in pp ep ee collisions
play

Statistical Fragmentation in pp & ep & ee Collisions Karoly - PowerPoint PPT Presentation

Statistical Fragmentation in pp & ep & ee Collisions Karoly Urmossy 1,3 , Zhangbu Xu 1,2 , T. S. Bir 3 , G. G. Barnafldi 3 1, 3, 2, Phys. Depat.,BNL, USA RCP, Hungary August 2016, USTC, Hefei Anhui China 1: e-mail:


  1. Statistical Fragmentation in pp & ep & ee Collisions Karoly Urmossy 1,3 , Zhangbu Xu 1,2 , T. S. Biró 3 , G. G. Barnaföldi 3 1, 3, 2, Phys. Depat.,BNL, USA RCP, Hungary August 2016, USTC, Hefei Anhui China 1: e-mail: karoly.uermoessy@cern.ch

  2. Motivation ● Goal Hadronisation inside fat jets ● Proposed model Statistical Model ● Suggestion Parametrise fragmentation functions as 2 ] D [ x = 2 P μ jet p h μ 2 = M jet , Q 2 M jet Energy fraction the Fragmentation hadron takes away scale: jet mass in the frame co-moving with the jet

  3. Outline ● 3D Statistical Jet fragmentation model hadron distributions in jets in e + e - , ep, pp collisions ● Applications - Transverse momentum spectra in pp collisions from a pQCD parton model calculation - Spectra & anisotropy of hadrons in heavy-ion collisions

  4. K. Urmossy – Hadronisation @ LEP, RHIC & LHC e + e - annihilations in the factorized picture Ideal world: 2 identical jets: width: q q 2 ≈ 0 ≪ M jet ∼ √ p q q, ̄ q =( √ s / 2 , 0,0, ± √ s / 2 ) p μ M ∼[ 0.1 − 0.5 ] √ s Problem: P 2 ~ 0 quark produces a heavy jet of mass 0 ● energy fraction of the p h x = hadron takes away from √ s / 2 the energy of the jet: Q ∼ √ s ● fragmentation scale:

  5. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Real world: the 2 jets are not identical heavy Energy-momentum conservation: light μ =( P 0 , 0,0, ∣ P ∣ ) P 1 M 1 M 2 μ =( √ s − P 0 , 0,0, − ∣ P ∣ ) P 2 ⃗ −⃗ P P Problems: 0 x = p h P 0 ≠ ( √ s / 2 ) ● the energy of a jet , so is no longer the √ s / 2 energy fraction , the hadron takes away from the energy of the jet. √ s / 2 ● fragmentation scale is no longer

  6. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Real world: the 2 jets are not identical heavy Energy-momentum conservation: light μ =( P 0 , 0,0, ∣ P ∣ ) P 1 M 1 M 2 μ =( √ s − P 0 , 0,0, − ∣ P ∣ ) P 2 ⃗ −⃗ P P We propose to use: μ P μ ● the real energy fraction the hadron jet x = 2 p h takes away from the energy of the jet 2 M jet in the frame co-moving with jet: Q ∼ M jet ● the jet mass as fragmentation scale :

  7. These new variables, x and M jet emergy naturally in a Statistical Fragmentation Model

  8. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Statistical jet-fragmentation The cross-section of the creation of hadrons h 1 , … , h N in a jet of N hadrons μ − P tot h 1 , … ,h N = ∣ M ∣ ( ∑ ) d Ω h 1 , … ,h N 2 δ ( 4 ) μ d σ p h i i If |M| ≈ constans , we arrive at a microcanonical ensemble : μ − P tot n − 2 = M h 1 , … ,h n ∼ δ ( ∑ ) d Ω h 1 , … ,h n μ μ ) 2n − 4 d σ p h i ∝ ( P μ P i Thus, the haron distribution in a jet of n hadron is x = P μ p μ n = fix ∝ Ω n − 1 ( P μ − p μ ) 0 d σ n − 3 , ∝ ( 1 − x ) p 3 p Ω n ( P μ ) 2 / 2 d M Energy of the hadron in the co-moving frame

  9. K. Urmossy – Hadronisation @ LEP, RHIC & LHC The haron distribution in a jet of n hadron with total momentum P p T ⃗ P / 2 μ n = fix x = P μ p p 0 d σ n − 3 , M ∝ ( 1 − x ) p Z 3 p 2 / 2 d M E Problems P ( n )= ( r − 1 ) ̃ n + r − 1 n ( 1 − ̃ r p ) p ● The hadron multiplicity in a jet fluctuates pp → jets @ 7 TeV e - e + → h ± Refs.: Urmossy et.al., PLB , 701 : 111-116 (2011) Urmossy et. al., PLB , 718 , 125-129, (2012)

  10. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Averaging over n fluctuations The distribution in a jet with fix n x = P μ p μ n = fix 0 d σ n − 3 , ∝ ( 1 − x ) p 3 p 2 / 2 d M The multiplicity distribution P ( n )= ( r − 1 ) ̃ n + r − 1 p n ( 1 − ̃ p ) r The n-averaged distribution 1 −̃ p = A [ 1 + q − 1 x ] − 1 /( q − 1 ) 0 d σ τ = p p ( r + 3 ) ̃ τ d 3 p q = 1 + 1 r + 3

  11. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Jet mass fluctuations ⃗ P e+e- → 2 jet: both E and of the jets fluctuate heavy light M 1 M 2 ⃗ −⃗ P P ⃗ P pp collisions: jet is measured, E, M fluctuates K.U, Z. Xu, arXiv:1605.06876 thin fat jets

  12. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Problems ep → 2 jets of approximately same E nergy ρ( M ) and large rapidity gap: data? E 1 ≈ E 2 P 1 ≈− ⃗ ⃗ P 2 M 1 Jet 1 ⃗ M P 1 proton Target fragmen- rapidity gap tation ⃗ P 2 ∣⃗ P ∣ still fluctuates! M 2 Jet 2

  13. K. Urmossy – Hadronisation @ LEP, RHIC & LHC μ x = P μ p We have a haron distribution, which depends on 2 / 2 M but, in case of available data, the jet E or P fluctuate: ⃗ P - pp collisions: is measured, E fluctuates ⃗ P - e + e - → 2 jet: both E and of the jets fluctuate ⃗ P - e + p → 2 jet: of the jets fluctuate So, we fit a characteristic/average jet mass and extract the scale dependence of the parameters of the model

  14. Results

  15. K. Urmossy – Hadronisation @ LEP, RHIC & LHC e + P → 2 jets → charged hadrons with large rapidity gap ∼ x p [ 1 + q − 1 x p ] − 1 /( q − 1 ) M 2 JET = E 1 + E 2 d σ τ dx p 2 E 1 = 1 ± 0.2 x p = 2p / M 2 JET E 2 Urmossy, Z. Xu, arXiv:1606.03208

  16. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Fitted average characteristic jet mass 2 E JET sin (ϑ cone ) 〈 M JET 〉 = M 0 + E JET / E 0 fitted Fitted average jet mass is of the order of that used in DGLAP calcs. 〈 M JET 〉 ∼ 2 E JET sin (ϑ cone ) Urmossy, Z. Xu, arXiv:1606.03208

  17. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Scale evolution of the fit parameters Urmossy, Z. Xu, arXiv:1606.03208

  18. K. Urmossy – Hadronisation @ LEP, RHIC & LHC PP → jet → charged hadrons ⃗ P jet ⃗ P jet ϑ c T p h ∥ p h jet p μ ∼ [ 1 + q − 1 x ] − 1 /( q − 1 ) x = 2P μ p 0 d σ d 3 p τ 2 M jet Urmossy, Z. Xu, proc. of conf.: DIS2016 , arXiv:1605.06876

  19. What we have: ● an approximate formula for the fragmentation function which does not solve DGLAP D ( x ) ∼ [ 1 + q − 1 x ] − 1 /( q − 1 ) τ ● Let us use this ansatz with scale dependent parameters q, T → q ( t ) , T ( t ) ● along with some other conjectures First step: in the Φ 3 theory

  20. K. Urmossy – Hadronisation @ LEP, RHIC & LHC 1. The Φ 3 theory case Resummation of branchings with DGLAP 1 dz d g 2 = 1 /(β 0 t ) dt D ( x ,t ) = g 2 ∫ t = ln ( Q 2 / Q 0 2 ) , z P ( z ) D ( x / z ,t ) , x P ( z ) = z ( 1 − z )− 1 12 δ( 1 − z ) with LO splitting function : M. Grazzini, Nucl. Phys. Proc. Suppl. Let the non-perturbative input at starting scale Q 0 be: 64: 147-151, 1998 D 0 ( x ) = ( 1 + q 0 − 1 x ) − 1 /( q 0 − 1 ) τ 0 1 dz D ( x ,t ) = ∫ The full solution is z f ( z,t ) D 0 ( x / z ) x j! ( k − 1 − j ) ! x ln k − 1 − j [ x ] [ (− 1 ) j +(− 1 ) k x ] k − 1 k ∞ ( k − 1 + j ) ! b 1 f ( x ) ∼ δ( 1 − x ) + ∑ k ! ( k − 1 ) ! ∑ with k = 1 j = 0 − 1 ln ( t / t 0 ) b = β 0 Urmossy, Z. Xu, arXiv:1606.03208

  21. K. Urmossy – Hadronisation @ LEP, RHIC & LHC 1. Approximations Let the FF preserve its form: D apx ( x ,t ) = ( 1 + q ( t )− 1 D ( x , 0 ) = ( 1 + q 0 − 1 x ) − 1 /( q ( t )− 1 ) x ) − 1 /( q 0 − 1 ) with τ 0 τ( t ) From DGLAP: D ( s,t ) = ̃ ̃ D ( s, 0 ) exp { b ( t ) ̃ − 1 ln ( t / t 0 ) b ( t ) = β 0 P ( s )} with Let us prescribe the approximations: a1 −α 2 ( t / t 0 ) − a2 q ( t )=α 1 ( t / t 0 ) ∫ D apx ( x ,t ) = ∫ D ( x ,t ) α 3 ( t / t 0 ) a1 −α 4 ( t / t 0 ) − a2 ∫ x D apx ( x ,t ) = ∫ x D ( x ,t ) = 1 τ 0 τ( t )= (by definition) α 4 ( t / t 0 ) − a2 −α 3 ( t / t 0 ) a1 ∫ x 2 D apx ( x ,t ) = ∫ x 2 D ( x ,t ) a 1 = ̃ a 2 = ̃ P ( 1 )/β 0 , P ( 3 )/β 0 Urmossy, Z. Xu, arXiv:1606.03208

  22. K. Urmossy – Hadronisation @ LEP, RHIC & LHC Scale evolution of the fit parameters a1 −α 2 ( t / t 0 ) − a2 τ 0 q ( t )=α 1 ( t / t 0 ) τ( t )= α 4 ( t / t 0 ) − a2 −α 3 ( t / t 0 ) a1 α 3 ( t / t 0 ) a1 −α 4 ( t / t 0 ) − a2 2 ) t = ln ( M jet 2 / Λ Urmossy, Z. Xu, arXiv:1606.03208

  23. K. Urmossy – Hadronisation @ LEP, RHIC & LHC 2. pp & ee collisions pp → jets @ LHC ( pT = 25–500 GeV/c) p Jet dN − b d z ∝ [ 1 − a ln ( 1 − z ) ] p Urmossy et.al. Phys. Lett. B , 718 , 125-129, (2012) e + e - annihilation @ LEP (√ s = 14–200 GeV) e + e – Urmossy et.al., Urmossy et. al., T. S. Biró et.al., Acta Phys. Polon. Phys. Lett. B , 701 , Acta Phys. Polon. B, Supp. 5 (2012) 363-368 111-116 (2011) 43 (2012) 811-820

  24. K. Urmossy – Hadronisation @ LEP, RHIC & LHC 2. Application in a pQCD calculation π + spectrum in pp --> π + X @ √s=7 TeV (NLO pQCD) AKK vs. Tsallis as Frag. Func. + ( z )∼( 1 +( q i − 1 ) z / T i ) π − 1 /( q i − 1 ) D p i Barnaföldi et. al., Proceedings of the Workshop Gribov '80 (2010)

  25. K. Urmossy – Hadronisation @ LEP, RHIC & LHC 3. How about the soft part? The power of the spectrum changes drastically at pT ~ 6 GeV/c. − 6.08 ∼ p T soft − 13.7 Tsallis ∼ p T hard Boltzmann T = 293 MeV A hard + soft model: hard soft E dN = E dN + E dN 3 p 3 p 3 p d d d

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend