gogny tdhfb
play

Gogny-TDHFB , - PowerPoint PPT Presentation

Gogny-TDHFB , 1. Introduction 2. From TDHF to TDHFB Ti52 Si26 1 Introduction


  1. Gogny-TDHFB による 原子核の非線形振動と緩和 橋本幸男 , 笹倉啓介 筑波大学数理物質科学研究科 1. Introduction 2. From TDHF to TDHFB * Ti52 の場合 * Si26 の場合 3.まとめ

  2. 1 . Introduction 時間依存平均場理論  微小振幅 RPA, 規準振動 中間振幅( ? ) → 緩和、 …  大振幅 核反応、融合、分裂

  3. エネルギーの移動 : 相対運動  内部の集団運動・核子の運動 one-body dissipation (2 body collision neglected) その微視的なメカニズムは ???  chaotic motion in TDHF (?)

  4. BKN force TDHF three-level model

  5. 2. From TDHF to TDHFB ☆対相関の効果を時間依存平均場で見る ⇒ エネルギー移動の仕組みを理解する

  6. see Ring & Schuck Equations of motion of matrices U & V

  7. Gogny ‐ D1S Gauss part density depende part L ‐ S part Coulomb part is NOT included ・basis function:three-dimensional harmonic oscillator wave functions     ・space: N n n n 5 shell x y z

  8. 初期条件 ・ Q 20 type impulse on ground state ( impulse type ) ・ CHFB 状態( constraint type ) initial U & V HFB ground state U, V : matrix representation of Q 0 multipole operator

  9. Example-1: 20 O quadrupole oscillation (small amplitude)

  10. Example-2. Spherical case: 26 Ne IV dipole response TDHFB (Nshll = 5) S. Peru, H. Goutte, J.F. Berger, Nucl. Phys. A788(2007), 44-49.

  11. 52 Ti の場合 ☆ 微小振幅・小励起エネルギー ⇒ 大振幅・大励起エネルギーへ

  12. Total Energy Pairing E (p) Pairing E (n) Energy Energy [MeV] pairing energy Q 20 [fm 2 ] oblate prolate energy curve E vs <Q 20 > ( 52 Ti (Z = 22, N = 30))

  13. Total Energy Pairing E (p) Pairing E (n) Energy [MeV] constraints impulse (4.32[MeV]) Q 20 [fm 2 ] … pairing in neutrons ( impulse 、 Q 20 = 140 , 230 〜 240 [fm 2 ] ) initial conditions = 150 〜 200 [fm 2 ]) … NO pairing in neutrons (Q 20

  14. [fm 2 ] [fm 2 ] Q 20 Q 20 … no pairing in neutrons … pairing in neutrons = 85 [fm 2 ] = 0 [fm 2 ] oscillation around Q 20 oscillations around Q 20

  15. ・ two types of oscillations after relaxation process ・ effects of pairing correlations in oscillating motions  put focus on the occupation probabilities of TDHFB orbitals

  16. = 85 [fm 2 ] (constraint Q 20 = 170 [fm 2 ]) Case 1: oscillations around Q 20 time dependence of occupation probability(neutrons) [fm 2 ] Q 20 initial condition : Q 20 ・ no pairing in neutrons = 170 [fm 2 ] Ex = 2.56[MeV]  no jump into ground state pocket ( Q20 = 0[fm^2]) E_pair(proton) = ‐ 3.55[MeV] E_pair(neutron) = 0 [MeV]

  17. Case 2: oscillations around ground state ( Q20 = 0 [fm^2]) (impulse type) time dependence of occupation probability(neutrons) [fm 2 ] Q 20 impulse type ・ two main trajectories Ex = 4.32[MeV] ・ Q 20 oscillation  seesaw in occupation probabilities E_pair(proton) = ‐ 4.79 [MeV] E_pair(neutron) = ‐ 2.75 [MeV]

  18. = 140 [fm 2 ]) Case 3: jump into ground state pocket (constraint Q 20 time dependence of occupation probability(neutrons) Q 20 [fm 2 ] [fm 2 ] Q 20 initial condition : Q 20 = 140 [fm 2 ] ・ sudden change in occupation probability Ex = 1.37[MeV]  Q20 oscillation jumps E_pair(proton) = ‐ 3.27 [MeV] ・ characteristic two orbitals E_pair(neutron) = ‐ 0.07 [MeV] ・ in phase with Q20 oscillation

  19. variations of occupation probabilities of two main trajectories (constrait Q 20 = 140 [fm 2 ]) 拡大図 prolate oblate prolate side … green orbital main ( n x , n y , n z ) = ( 3, 0, 0 ) oblate phase … blue orbital main ( n x , n y , n z ) = ( 0, 3, 0 ) , ( 0, 0, 3 )

  20. 52 Ti (Z = 22, N = 30) ⼀粒⼦エネルギー ( 中性⼦ ) E F p 3/2 f 7/2 d 3/2 Energy [MeV] s 1/2 d 5/2 p 1/2 p 3/2 s 1/2 Q 20 [fm 2 ] oblate prolate change of occupation probability quadrupole oscillation

  21. = 240 [fm 2 ]) Case 4: slow relaxation (constraint Q 20 準粒⼦軌道の占有率の時間変化(中性⼦) Q 20 [fm 2 ] initial condition : Q 20 = 240 [fm 2 ] slow relaxation Ex = 7.37[MeV] ・ occupation probabilities of many orbitals change E_pair(proton) = ‐ 4.79 [MeV] → two main orbitals becomes unclear E_pair(neutron) = ‐ 0.89 [MeV]

  22. 165 [fm 2 ]) Case 5: from oblate (initial Q 20 = ‐ 準粒⼦軌道の占有率の時間変化(中性⼦) initial condition : Q 20 = ‐ 165[fm 2 ] Ex = 4.25 [MeV] E_pair(proton) = ‐ 4.32 [MeV] E_pair(neutron) = ‐ 2.16 [MeV]

  23. Time [fm] Energy [MeV] [fm 2 ] Q 20 Impulse type Initial Q20 = 140 Initial Q20 = 240 Initial Q20 = 200 Ex E= 4.32[MeV] Ex E= 1.37[MeV] Ex E= 7.37[MeV] Ex E=4.32 [MeV] Pairing E (p)= ‐ 4.79[MeV] Pairing E (p)= ‐ 3.27[MeV] Pairing E (p)= ‐ 4.79[MeV] Pairing E (p)= ‐ 4.19[MeV] Pairing E (n)= ‐ 2.75[MeV] Pairing E (n)= ‐ 0.07[MeV] Pairing E (n)= ‐ 0.89[MeV] Pairing E (n)=0 [MeV]

  24. (MeV) Amplitudes of slow oscillations with excitation energy from 2.72 to 10.85 [MeV] grow very slowly.

  25. Si26の場合 対エネルギー (MeV) Q20 vs 時間 Q20 (fm^2)

  26. まとめ 微⼩振幅から振幅を増加させたときの核の振動運動と、 その時の対相関の働き → Gogny ⼒を⽤いた TDHFB 法により、 52 Ti などの四重極型振動運動 中性⼦の対相関の有無によって、 ⼆種類の振動モードが現れる 基底状態まわりの振動 ・四重極振動と、粒⼦が詰まる軌道の⼊れ替わりが対応 → 断熱的描像 ・中性⼦の対相関の効果によって、四重極振動の周期や、 基底状態まわりに乗り移るまでの時間が決まる

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend