geophysical ice flows analytical and numerical approaches
play

Geophysical Ice Flows: Analytical and Numerical Approaches Will - PowerPoint PPT Presentation

Geophysical Ice Flows: Analytical and Numerical Approaches Will Mitchell University of Alaska - Fairbanks July 23, 2012 Supported by NASA grant NNX09AJ38G Ice: an awesome problem ...velocity, pressure, temperature, free surface all evolve


  1. Geophysical Ice Flows: Analytical and Numerical Approaches Will Mitchell University of Alaska - Fairbanks July 23, 2012 Supported by NASA grant NNX09AJ38G

  2. Ice: an awesome problem ...velocity, pressure, temperature, free surface all evolve

  3. Outline ◮ I. Introduction to viscous fluids ◮ II. Exact solutions ◮ III. Finite element solutions

  4. Stress: force per unit area A tornado sucks up a penny. At any time: ◮ The fluid into which n points exerts a force on the penny ◮ Force / area = stress ◮ The stress vector is a linear function of n ◮ In a Cartesian system: stress = σ · n ◮ σ is the Cauchy stress tensor Quiz: Suppose there is no p ≥ 0 such that σ · n = − p n . Physical interpretation?

  5. Decomposition of stress ◮ In a fluid at rest, σ · n = − p n , so σ = − pI ◮ In general, choose p = − Trace( σ ) / d , so σ = − pI + τ where τ has zero trace. ... this defines pressure p and deviatoric stress τ

  6. Strain rate ◮ let u be a velocity field ◮ the gradient of a vector is the tensor ( ∇ u ) ij = ∂ u j ∂ x i ◮ define Du = 1 2( ∇ u + ∇ u T ) 2 ∂ u 1 ∂ u 2 + ∂ u 1   ∂ x 1 ∂ x 1 ∂ x 2 ◮ in 2D: Du = 1   ∂ u 1 + ∂ u 2 2 ∂ u 2 2   ∂ x 2 ∂ x 1 ∂ x 2 ◮ Du is the strain rate tensor. True or False: “Since Du is a derivative of velocity, it measures acceleration.”

  7. Constitutive Laws: Newtonian How does a fluid respond to a given stress? ◮ For Newtonian fluids ( e.g. water) a linear law: τ = 2 µ Du The proportionality constant µ is the viscosity .

  8. Constitutive Laws: Glen’s For glacier ice, a nonlinear law. ◮ define � � 1 1 � τ � = 2Tr( τ T τ ) and � Du � = 2Tr( Du T Du ) ◮ assume � Du � = A � τ � n ◮ the law is either of τ = ( A � τ � n − 1 ) − 1 Du τ = A − 1 / n � Du � (1 − n ) / n Du A is the ice softness , n ≈ 3 is Glen’s exponent.

  9. Stokes Equation What forces act on a blob occupying a region Ω within a fluid? ◮ body force, gravity: � Ω ρ g ◮ force exerted by surrounding fluid: � � ∂ Ω σ · n = Ω ∇ · σ Force = rate of change of momentum ρ g + ∇ · σ = ∂ � � ρ u ∂ t Ω Ω D � = Dt ρ u . Ω � � D � < 10 − 15 so � � � � In glaciers, Fr = Dt ρ u � : � p � � � ρ g + ∇ · σ = 0 .

  10. Incompressible Stokes System (two versions) � ρ g + ∇ · σ = 0 ∇ · u = 0 ∇ · σ = ∇ · τ + ∇ p = 2 µ ∇ · ˙ ǫ − ∇ p = µ ∇ · ( ∇ u ) + µ ∇ · ( ∇ u T ) − ∇ p ∇ · ( ∇ u ) = ∂ ∂ u j = ∂ ( ∇ · u ) = 0 ∂ x j ∂ x i ∂ x i ∇ · ( ∇ u T ) = ∂ ∂ u i = ∆ u ∂ x j ∂ x j � − µ △ u + ∇ p = ρ g ∇ · u = 0

  11. The Biharmonic Equation ◮ for 2D, incompressible flow: u = ( u , 0 , w ) and ∇ · u = 0 ◮ there is a streamfunction ψ such that ψ z = u , − ψ x = w . ◮ take the curl of the Stokes eqn � � ∇ × − µ △ u + ∇ p = ρ g to get the biharmonic equation ψ xxxx + 2 ψ xxzz + ψ zzzz = 0 or △△ ψ = 0 . Quiz: give an example of a function solving the biharmonic eqn.

  12. Ice: an awesome problem ...velocity, pressure, temperature, free surface all evolve

  13. Slab-on-a-slope: a tractable problem � � g = ( g 1 , g 2 ) = ρ g sin( α ) , − cos( α ) ...no evolution

  14. Stokes bvp find a velocity u = ( u , w ) and pressure p such that −∇ p + µ △ u = − g on Ω ∇ · u = 0 on Ω u (0 , z ) − u ( L , z ) = 0 for all z u x (0 , z ) − u x ( L , z ) = 0 for all z u = f on { z = 0 } w = 0 on { z = 0 } w x + u z = 0 on { z = H } 2 w zx − ( u xx + u zz ) = g 1 /µ on { z = H } where f ( x ) = a 0 + � ∞ n =1 a n sin( λ n x ) + b n cos( λ n x ).

  15. biharmonic bvp find a streamfunction ψ such that △△ ψ = 0 on Ω ψ z (0 , z ) − ψ z ( L , z ) = 0 for all z ψ xz (0 , z ) − ψ xz ( L , z ) = 0 for all z ψ x (0 , z ) − ψ x ( L , z ) = 0 for all z ψ xx (0 , z ) − ψ xx ( L , z ) = 0 for all z ψ ( x , 0) = 0 for all x ψ z ( x , 0) = f for all x ψ zz ( x , H ) − ψ xx ( x , H ) = 0 for all x 3 ψ xxz ( x , H ) + ψ zzz ( x , H ) = − g 1 /µ for all x . (1)

  16. biharmonic bvp, subproblem: f = 0 u ( x , z ) = g 1 H µ z − g 1 2 µ z 2 ψ ( x , z ) = g 1 H 2 µ z 2 − g 1 6 µ z 3 − → w ( x , z ) = 0 ...this is Newtonian laminar flow , a well known solution.

  17. biharmonic bvp, subproblem: f � = 0 strategy: ◮ separate variables: ψ ( x , z ) = X ( x ) Z ( z ) ◮ periodicity: take X ( x ) = sin( λ x ) + cos( λ x ) for λ = 2 π n L ◮ the biharmonic eqn reduces to an ODE: � λ 4 Z − 2 λ 2 Z ′′ + Z (iv) � 0 = △ 2 ( XZ ) = X ◮ for λ > 0 this gives Z ( z ) = a sinh( λ z ) + b cosh( λ z ) + cz sinh( λ z ) + dz cosh( λ z ) ◮ homogeneous bcs determine b , c , d in terms of a ◮ weighted sum gets the nonzero condition

  18. Exact Solutions Horizontal Component of Velocity: ∞ λ n H 2 ( a n sin( λ n x ) + b n cos( λ n x )) u ( x , z ) = a 0 + g 1 H µ z − g 1 2 µ z 2 + � Z ′ n ( z ) n H 2 + cosh 2 ( λ n H ) λ 2 n =1 where n ( z ) = − 1 � � Z ′ H cosh( λ n H ) sinh( λ n ( z − H )) + λ n z cosh( λ n ( z − H )) + cosh( λ n H ) − λ n H sinh( λ n H ) � · cosh( λ n ( z − H )) λ n H 2 � + λ n z sinh( λ n ( z − H )) + λ n cosh( λ n z ) .

  19. Exact Solutions Vertical Component of Velocity: ∞ λ 2 n H 2 � w ( x , z ) = n H 2 + cosh 2 ( λ n H )( b n sin( λ n x ) − a n cos( λ n x )) Z n ( z ) λ 2 n =1 where Z n ( z ) = sinh( λ n z ) − 1 H cosh( λ n H ) z sinh( λ n ( z − H )) � cosh( λ n H ) − sinh( λ n H ) � + z cosh( λ n ( z − H )) λ n H 2 H

  20. Exact Solutions Pressure: p ( x , z ) = g 2 z − g 2 H ∞ λ 3 n H ( a n cos( λ n x ) − b n sin( λ n x )) � + 2 µ × n H 2 + cosh 2 ( λ n H ) λ 2 n =1 � sinh( λ n z ) − cosh ( λ n H ) � cosh ( λ n ( z − H )) . λ n H ... this is new.

  21. The finite element method ◮ numerical approximation of p and u ◮ requires a mesh of the domain: ◮ leads to a system of linear equations A x = b

  22. Variational Formulation: incompressibility Incompressibility: ∇ · u = 0. We seek a u ∈ H 1 (Ω) such that for all q ∈ L 2 (Ω), we have � q ∇ · u = 0 . Ω u is a trial function ; q is a test function .

  23. Variational Formulation: Stokes Put σ = τ − pI in the Stokes equation: 0 = ∇ · τ − ∇ p + ρ g Dot with v ∈ H 1 and integrate over Ω. Integration by parts gives � � � � τ : ∇ v − p ∇ · v − n · σ · v = ρ g · v . Ω Ω ∂ Ω Ω More manipulation gives 1 � � � � ∇ u T + ∇ u � � ∇ v + ∇ v T � 2 µ : − p ∇ · v = ρ g · v . Ω Ω Ω

  24. Variational Formulation E × L 2 such that for all ( v , q ) ∈ H 1 E 0 × L 2 we have Find ( u , p ) ∈ H 1 1 � � � � � ∇ u T + ∇ u � � ∇ v + ∇ v T � 2 µ : − p ∇· v + q ∇· u = ρ g · v . Ω Ω Ω Ω Still a continuous problem: ( u , p ) satisfy many conditions. Make a discrete problem using finite-dimensional spaces.

  25. Pressure Approximation space Continuous functions that are linear on each triangle: a 16-dimensional space with a convenient basis.

  26. Velocity Approximation space Continuous functions that are quadratic on each triangle: a 49-dimensional space (per component) with a convenient basis.

  27. Implementation I ...based on [Jar08] but with an important difference 1 from d o l f i n import ∗ 2 #Set domain parameters and p h y s i c a l c ons ta nts 3 Le , He = 4e3 , 5e2 #length , h e i g h t (m) 4 alpha = 1 ∗ p i /180 #s l o p e angle ( r a d i a n s ) 5 rho , g = 917 , 9.81 #d e n s i t y ( kg m − 3) , g r a v i t y (m sec − 2) 6 mu = 1e14 #v i s c o s i t y (Pa sec ) 7 G = Constant (( s i n ( alpha ) ∗ g ∗ rho , − cos ( alpha ) ∗ g ∗ rho ) ) 8 #Define a mesh and some f u n c t i o n spaces 9 mesh = Rectangle (0 ,0 , Le , He , 3 , 3 ) 10 V = VectorFunctionSpace ( mesh , ”CG” , 2) #pw q u a d r a t i c 11 Q = FunctionSpace ( mesh , ”CG” , 1) #pw l i n e a r 12 W = V ∗ Q #product space 13 ””” Define the D i r i c h l e t c o n d i t i o n at the base ””” 14 def LowerBoundary ( x , on boundary ) : r e t u r n x [ 1 ] < DOLFIN EPS and on boundary 15 16 S l i p R a t e = E x p r e s s i o n (( ”(3+1.7 ∗ s i n (2 ∗ p i/%s ∗ x [ 0 ] ) ) \ /31557686.4 ”%Le , ” 0.0 ” ) ) 17 18 bcD = Di ri c hl et B C (W. sub (0) , SlipRate , LowerBoundary )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend