scales in geophysical flows
play

Scales in geophysical flows Rupert Klein Mathematik & - PowerPoint PPT Presentation

Scales in geophysical flows Rupert Klein Mathematik & Informatik, Freie Universit at Berlin CEMRACS 2019 Geophysical Fluids, Gravity Flows CIRM, Luminy, July 16, 2019 Motivation Scale analysis & distinguished limits Model


  1. Scales in geophysical flows Rupert Klein Mathematik & Informatik, Freie Universit¨ at Berlin CEMRACS 2019 “Geophysical Fluids, Gravity Flows” CIRM, Luminy, July 16, 2019

  2. Motivation Scale analysis & distinguished limits Model hierarchy for atmospheric flows A puzzle R.K., Ann. Rev. Fluid Mech., 42 , 249–274 (2010)

  3. Scale-Dependent Models 10 km / 20 min Changes in temperature latitude 1000 km / 2 days Winter (DJF) 10000 km / 1 season Thanks to: P.K. Taylor, Southampton Oceanogr. Inst.; P. N´ evir, Freie Universit¨ at Berlin; S. Rahmstorf, PIK, Potsdam

  4. Scale-Dependent Models u t + u · ∇ u + w u z + ∇ π = S u w t + u · ∇ w + ww z + π z = − θ ′ + S w θ ′ t + u · ∇ θ ′ + wθ ′ z = S ′ θ ∇ · ( ρ 0 u ) + ( ρ 0 w ) z = 0 θ = 1 + ε 4 θ ′ ( x , z, t ) + o ( ε 4 ) ( ∂ τ + u (0) · ∇ ) q = 0 Anelastic Boussinesque Model � � ρ (0) q = ζ (0) + Ω 0 βη + Ω 0 ∂ d Θ /dz θ (3) ρ (0) ∂z 10 km / 20 min θ (3) = − ∂π (3) u (0) = 1 ζ (0) = ∇ 2 π (3) , k × ∇ π (3) ∂z , Ω 0 ∂Q T ∂t + ∇ · F T = S T ∂Q q ∂t + ∇ · F q = S q Quasi-geostrophic theory � � � H a � H a � ( u ′ ϕ ′ ) + D ϕ � � Q ϕ = ρ ϕ dz , F ϕ = ρ u ϕ + dz , ϕ ∈ { T, q } z s z s � � � � − z − z s T = T s ( t, x ) + Γ( t, x ) min( z, H T ) − z s , q = q s ( t, x ) exp H q 1000 km / 2 days � � � � � z − z − γz T dz ′ ρ = ρ ∗ exp , p = p ∗ exp + p 0 ( t, x ) + gρ ∗ h sc h sc T ∗ 0 u = u g + u a , fρ ∗ k × u g = −∇ x p u α = α ∇ p 0 V. Petoukhov et al., CLIMBER-2 ... , Climate Dynamics, 16, (2000) EMIC - equations (CLIMBER-2) 10000 km / 1 season

  5. Scale-Dependent Models Compressible flow equations with general source terms � ∂ ∂t + � v · � ∇ + w ∂ � v � + � (2 Ω × v ) + 1 ρ ∇ || p = S v � , ∂z � ∂ ∂t + � v · � ∇ + w ∂ � w + (2 Ω × v ) ⊥ + 1 ∂p = S w − g , ∂z ρ ∂z � ∂ � ∂t + � v · � ∇ + w ∂ ρ + ρ ∇ · v = 0 , ∂z � ∂ � ∂t + � v · � ∇ + w ∂ Θ = S Θ , ∂z � p � R/c p = ρ Θ . p ref ρ ref T ref How do all the simplified models relate to this system?

  6. Motivation Scale analysis & distinguished limits Model hierarchy for atmospheric flows A puzzle

  7. Scale-Dependent Models ∼ 6 · 10 6 m Earth’s radius a 10 − 4 s − 1 Earth’s rotation rate Ω ∼ 9 . 81 ms − 2 Acceleration of gravity g ∼ 10 5 kgm − 1 s − 2 Sea level pressure p ref ∼ H 2 O freezing temperature T ref ∼ 273 K L q vs ∼ 4 · 10 4 J kg − 1 K − 1 Latent heat of water vapor 287 m 2 s − 2 K − 1 Dry gas constant R ∼ Dry isentropic exponent γ ∼ 1 . 4 Dimensionless parameters: RT ref p ref h sc ∼ 1 . 6 · 10 − 3 ∼ ε 3 h sc = ∼ 8 . 5 km Π 1 = = g ρ ref g a � � L q vs ∼ 1 . 5 · 10 − 1 ∼ c ref = RT ref = gh sc ∼ 300 m / s where Π 2 = ε c p T ref γR ∼ 4 . 7 · 10 − 1 ∼ √ ε c ref c p = Π 3 = γ − 1 Ω a

  8. Scale-Dependent Models ∼ 6 · 10 6 m Earth’s radius a 10 − 4 s − 1 Earth’s rotation rate Ω ∼ 9 . 81 ms − 2 Acceleration of gravity g ∼ 10 5 kgm − 1 s − 2 Sea level pressure p ref ∼ H 2 O freezing temperature T ref ∼ 273 K L q vs ∼ 4 · 10 4 J kg − 1 K − 1 Latent heat of water vapor 287 m 2 s − 2 K − 1 Dry gas constant R ∼ Dry isentropic exponent γ ∼ 1 . 4 Distinguished limit: RT ref p ref h sc ∼ 1 . 6 · 10 − 3 ∼ ε 3 Π 1 = h sc = = ∼ 8 . 5 km g ρ ref g a � � L q vs ∼ 1 . 5 · 10 − 1 ∼ c ref = RT ref = gh sc ∼ 300 m / s where Π 2 = ε c p T ref γR ∼ 4 . 7 · 10 − 1 ∼ √ ε c ref c p = Π 3 = γ − 1 Ω a

  9. F F = − cx m ¨ x distinguished limits for the harmonic oscillator F D ( t ) F R = − k ˙ x (D¨ amon)

  10. m ¨ x + k ˙ x + cx = F 0 cos(Ω t ) x (0) = x 0 , x (0) = ˙ ˙ x 0 F F = − cx ε = m Ω 2 ≪ 1 m ¨ x c k Ω δ = ≪ 1 c F D ( t ) F R = − k ˙ x (D¨ amon) cx 0 = O (1) F 0 c ˙ x 0 = ? Ω F 0

  11. F F = − cx Dimensionless representation m ¨ x ( t ) = F 0 x c y ( τ ) , τ = Ω t then F D ( t ) ε y ′′ + δ y ′ + y = cos( τ ) F R = − k ˙ x (D¨ amon) Is there a unique limit solution for ε = δ = 0 ?

  12. m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 x [m] x[m] 0 0 0.2 0.2 0.4 0.4 0.6 0.6 reference solution with: m = k = 0 reference solution with: m = k = 0 0.8 0.8 x(t) with: k = 1; c = 25; m = 0.01; F0 = 0 x(t) with: k = 0.01; c = 25; m = 1; F0 = 0 1 1 0 1 2 3 4 5 6 0 10 20 30 40 50 60 time [s] time [s] ε = 0 . 0004 ε = 0 . 04 δ = 0 . 04 δ = 0 . 0004 The limit is path-dependent!

  13. m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 x [m] x[m] 0 0 0.2 0.2 0.4 0.4 0.6 0.6 reference solution with: m = k = 0 reference solution with: m = k = 0 0.8 0.8 x(t) with: k = 1; c = 25; m = 0.01; F0 = 0 x(t) with: k = 0.01; c = 25; m = 1; F0 = 0 1 1 0 1 2 3 4 5 6 0 10 20 30 40 50 60 time [s] time [s] ε = 0 . 0004 ε = 0 . 04 δ = 0 . 04 δ = 0 . 0004 The limit is path-dependent!

  14. δ II III I ε

  15. Scale-Dependent Models ∼ 6 · 10 6 m Earth’s radius a 10 − 4 s − 1 Earth’s rotation rate Ω ∼ 9 . 81 ms − 2 Acceleration of gravity g ∼ 10 5 kgm − 1 s − 2 Sea level pressure p ref ∼ H 2 O freezing temperature T ref ∼ 273 K L q vs ∼ 4 · 10 4 J kg − 1 K − 1 Latent heat of water vapor 287 m 2 s − 2 K − 1 Dry gas constant R ∼ Dry isentropic exponent γ ∼ 1 . 4 Distinguished limit: RT ref p ref h sc ∼ 1 . 6 · 10 − 3 ∼ ε 3 Π 1 = h sc = = ∼ 8 . 5 km g ρ ref g a � � L q vs ∼ 1 . 5 · 10 − 1 ∼ c ref = RT ref = gh sc ∼ 300 m / s where Π 2 = ε c p T ref γR ∼ 4 . 7 · 10 − 1 ∼ √ ε c ref c p = Π 3 = γ − 1 Ω a

  16. Motivation Scale analysis & distinguished limits Model hierarchy for atmospheric flows A puzzle

  17. Scale-Dependent Model Hierarchy Nondimensionalization ( x , z ) = 1 t = u ref ( x ′ , z ′ ) , t ′ h sc h sc � p ′ � , T ′ , ρ ′ RT ref ( u , w ) = 1 ( u ′ , w ′ ) , ( p, T, ρ ) = u ref p ref T ref p ref where u ref = 2 gh sc ∆Θ ( thermal wind scaling ) π Ω a T ref

  18. Scale-Dependent Model Hierarchy Compressible flow equations with general source terms � ∂ � ∂t + v � · ∇ � + w ∂ v � + ε (2 Ω × v ) � + 1 ε 3 ρ ∇ || p = S v � , ∂z � ∂ � ∂t + v � · ∇ � + w ∂ w + ε (2 Ω × v ) ⊥ + 1 ∂p = S w − 1 ε 3 , ε 3 ρ ∂z ∂z � ∂ � ∂t + v � · ∇ � + w ∂ ρ + ρ ∇ · v = 0 , ∂z � ∂ � ∂t + v � · ∇ � + w ∂ Θ = S Θ . ∂z

  19. Scale-Dependent Model Hierarchy Classical length scales and dimensionless numbers L mes = ε − 1 h sc Fr int ∼ ε L syn = ε − 2 h sc ∼ ε − 1 Ro h sc Ro L Ro ∼ ε L Ob = ε − 5 / 2 h sc ∼ ε 3 / 2 = ε − 3 h sc Ma L p N 2 = g d Θ Example: the synoptic scale ∗ Θ dz � � √ gh sc L syn = Nh sc ∼ 1 g ∆Θ h sc = u ref ∆Θ h sc Ω Ω T ref h sc Ω h sc u ref T ref � 1 ∆Θ 2 = h sc h sc = h sc ε − 1 − 3 2 + 1 = Ro h sc ε 2 Ma T ref ∗ distance which an internal wave must travel until influenced at leading order by the Coriolis effect

  20. Scale-Dependent Model Hierarchy Single-scale asymptotics m � � � φ i ( ε ) U ( i ) ( t, x , z ; ε ) + O U ( t, x , z ; ε ) = φ m ( ε ) i =0 Remark Generally, m < ∞ , and the series would not converge !

  21. Scale-Dependent Model Hierarchy Recovered classical single-scale models: U ( i ) = U ( i ) ( t ε , x , z Linear small scale internal gravity waves ε ) U ( i ) = U ( i ) ( t, x , z ) Anelastic & pseudo-incompressible models U ( i ) = U ( i ) ( ε t, ε 2 x , z ) Linear large scale internal gravity waves U ( i ) = U ( i ) ( ε 2 t, ε 2 x , z ) Mid-latitude Quasi-Geostrophic Flow U ( i ) = U ( i ) ( ε 2 t, ε 2 x , z ) Equatorial Weak Temperature Gradients U ( i ) = U ( i ) ( ε 2 t, ε − 1 ξ ( ε 2 x ) , z ) Semi-geostrophic flow U ( i ) = U ( i ) ( ε 3 / 2 t, ε 5 / 2 x, ε 5 / 2 y, z ) Kelvin, Yanai, Rossby, and gravity Waves ... and many more

  22. Scale-Dependent Model Hierarchy [ h sc / u ref ] 1/ 3 PG 1/ 5/2 1/ 2 QG inertial waves HPE WTG 1/ +Coriolis anelastic / pseudo-incompressible +Coriolis internal waves WTG 1 HPE Boussi- acoustic waves nesq Obukhov advection scale 1/ 5/2 1/ 2 1/ 3 1 1/ [ h sc ] bulk convective meso synoptic planetary micro R.K., Ann. Rev. Fluid Mech., 42 , 249–274 (2010)

  23. Motivation Scale analysis & distinguished limits Model hierarchy for atmospheric flows A puzzle

  24. Scale-Dependent Models Compressible flow equations without source terms D v � + ε (2 Ω × v ) � + 1 ε 3 ρ ∇ || p = 0 , Dt Dw + ε (2 Ω × v ) ⊥ + 1 ∂p = − 1 ε 3 , ε 3 ρ Dt ∂z Dρ + ρ ∇ · v = 0 , Dt D Θ = 0 . Dt where � ∂ � D ∂t + v � · ∇ � + w ∂ Dt = ∂z

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend