galaxy formation in sphs
play

Galaxy formation in SPHS Justin Read ETH Zrich | University of - PowerPoint PPT Presentation

Galaxy formation in SPHS Justin Read ETH Zrich | University of Leicester With: T. Hayfield, A. Hobbs, C. Power Background | Classic SPH N Integral i = m j W ij ( | r ij | , h i ) ( Continuity j N d v i m j dt = i


  1. Galaxy formation in SPHS Justin Read ETH Zürich | University of Leicester With: T. Hayfield, A. Hobbs, C. Power

  2. Background | ‘Classic’ SPH N ⇧ Integral ρ i = m j W ij ( | r ij | , h i ) ( Continuity j N d v i m j ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij Momentum ⇧ j P i = A i ρ γ ; A i = const . Eqn. of state i Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  3. Background | The Euler equations (Lagrangian ‘entropy’ form) N N ⇧ ⇧ ρ i = ρ i = m j W ij ( | r ij | , h i ) m j W ij ( | r ij | , h i ) ( ( Integral Continuity Integral Continuity j j ! N d v i P i + P j X ⇧ ⇧ Momentum Momentum m j r i W ij dt = ρ 2 ρ 2 i i j j P i = A i ρ γ P i = A i ρ γ ; A i = const . ; A i = const . Eqn. of state Eqn. of state i i j ‘classic’ SPH [inc. ‘energy’ form and similar] Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  4. Background | The Euler equations (Lagrangian ‘entropy’ form) N N ⇧ ⇧ ρ i = ρ i = m j W ij ( | r ij | , h i ) m j W ij ( | r ij | , h i ) ( ( Integral Continuity Integral Continuity j j N N d v i m j d v i m j ⇧ ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij dt = ρ i ρ j ( P i + P j ) ⇤ i W ij ⇧ ⇧ Momentum Momentum i j j P i = A i ρ γ P i = A i ρ γ ; A i = const . ; A i = const . Eqn. of state Eqn. of state i i j Improved force error Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  5. Background | Advantages of SPH 1. Lagrangian 2. Galilean invariant 3. Manifestly conservative 4. Easy to implement 5. Couples to O(N) FMM gravity Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  6. Background | Some problems with ‘classic’ SPH The “blob test” A 1:10 density ratio gas sphere in a wind tunnel (Mach 2.7), initially in pressure eq. Agertz et al. 2007

  7. Background | Some problems with ‘classic’ SPH 1. The ‘E0’ error 2. Multivalued pressures 3. Overly viscous 4. Noisy Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  8. 1. The ‘E0 error’ | Taylor expanding the momentum equation N d v i m j ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij Momentum j P j � P i + hx ij · ∇ P i + O ( h 2 ) Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  9. 1. The ‘E0 error’ | Taylor expanding the momentum equation N d v i m j ⇧ dt = ρ i ρ j ( P i + P j ) ⇤ i W ij Momentum j N d v i dt ⇥ � P i m j i W ij � M i ⇤ i P i ⇧ ρ j ⇤ x h i ρ i 2 + O ( h ) ( ρ i j ⇒ Euler eqn. E 0 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  10. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling N ⌃ m j ⇧ ρ j ⇤ x dV ⇤ x W E 0 = 2 i W ij ⇥ 2 V j x x x x x x x x x x xx x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1. Smooth on kernel scale (stable kernel) 2. Larger neighbour number 3. More power in kernel wings Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  11. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling HOCT CS CT Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  12. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 ` Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  13. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-CS128 100 80 y 60 40 20 − 40 − 20 0 20 40 x Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  14. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-CT128 100 80 y 60 40 20 − 40 − 20 0 20 40 x Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  15. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-HOCT442 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  16. 1. The ‘E0 error’ | Minimising E0 - raising the kernel sampling SPH-CS128 SPH-HOCT442 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  17. 2. Multivalued pressures | The problem x o x x o x x o x P 1 = A 1 ρ γ P 2 = A 2 ρ γ x o 1 2 x x o x x o x P 1 = P 2 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  18. 2. Multivalued pressures | The problem x o x x o x x o x P 1 = A 1 ρ γ P 2 = A 2 ρ γ o x x x o x x o x P 1 � = P 2 Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  19. 2. Multivalued pressures | The problem 1.3 SPH-HOCT442 1.2 1.1 P P 0 1.0 0.9 0.8 0 20 40 60 80 100 y Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011

  20. 2. Multivalued pressures | An ‘early warning’ switch P Add conservative dissipation: Momentum : Artificial viscosity Entropy : Artificial thermal conductivity Mass : (i.e. for multimass applications) A 1 , m 1 , v 1 ... A 2 , m 2 , v 2 ... Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011; Ritchie & Thomas 2001; Price 2008; Wadsley et al. 2008; Cullen & Dehnen 2010

  21. 2. Multivalued pressures | An ‘early warning’ switch ⇧ h 2 i | ⌅ ( ⌅ · v i ) | ⌅ · v i < 0 i | ⌅ ( ⌅ · v i ) | + h i | ⌅ · v i | + n s c s α max h 2 α loc ,i = [i.e. converging] 0 [i.e. going to converge] otherwise [Requires high order gradient estimator] α i = α loc ,i α i < α loc ,i otherwise, α i smoothly decays back to zero: α i = ( α loc ,i � α i ) / τ i ˙ α min < α loc ,i < α i α i = ( α min � α i ) / τ i ˙ α min > α loc ,i Read, Hayfield & Agertz 2010 (RHA10); Read & Hayfield 2011; Ritchie & Thomas 2001; Price 2008; Wadsley et al. 2008; Cullen & Dehnen 2010

  22. SPHS | Putting it all together 1. ‘E0’ error reduced using 442 neighbours and stable higher order HOCT kernel. Also much lower noise (4). 2. Multivalued pressures eliminated using advance warning high order switch and conservative dissipation. Lower viscosity away from shocks (3); multimass particles now possible. 3. Timestep limiter [Saitoh & Makino 2009] => strong shocks correctly tracked. 4. Implementations in GADGET2 & 3. Read & Hayfield 2011

  23. SPHS tests | Sedov-Taylor blast wave SPHS-442 ` Read & Hayfield 2011

  24. SPHS tests | Sedov-Taylor blast wave Read & Hayfield 2011

  25. SPHS tests | Sedov-Taylor blast wave Read & Hayfield 2011

  26. SPHS tests | Sedov-Taylor blast wave Read & Hayfield 2011

  27. SPHS tests | Gresho vortex SPHS-442 Read & Hayfield 2011

  28. SPHS tests | Gresho vortex Read & Hayfield 2011

  29. SPHS tests | KH instability 1:8 density contrast ... multimass SPHS-442 ` multimass Read & Hayfield 2011

  30. SPHS tests | Blob test SPHS-442 ` Read & Hayfield 2011

  31. SPHS tests | Santa Barbara test SPH-32 SPHS-442 x8 Power, Read & Hobbs in prep. 2012

  32. SPHS tests | Santa Barbara test SPH-32 SPHS-442 x128 Power, Read & Hobbs in prep. 2012

  33. SPHS tests | Santa Barbara test SPH-32 SPHS-442 x128 Power, Read & Hobbs in prep. 2012

  34. SPHS tests | Santa Barbara test z = 0 SPH-32 SPHS-442 Power, Read & Hobbs in prep. 2012

  35. SPHS tests | Santa Barbara test z = 1 SPH-32 SPHS-442 Power, Read & Hobbs in prep. 2012

  36. SPHS | Cooling halos SPH-96 SPHS-442 Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814

  37. 10 5 kpc -5 -10 Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814

  38. Stars Gas 1000 1000 800 800 SPH 600 600 N stars N gas 400 400 200 200 SPHS 0 0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 J z /J c J z /J c Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814

  39. SPH SPHS Density Density Pressure Pressure Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814

  40. SPH SPHS Pressure Pressure Entropy Entropy Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814

  41. SPHS-442 | 5M Hobbs, Read & Cole 2012; http://arxiv.org/abs/1207.3814

  42. SPHS | Conclusions • ‘E0’ error reduced using 442 neighbours and stable higher order HOCT kernel. Much lower noise. • Multivalued pressures eliminated using advance warning high order switch and conservative dissipation. Lower viscosity away from shocks; multimass particles now possible. • Timestep limiter => strong shocks correctly tracked. • Good performance and convergence to >1% accuracy on a wide range of test problems. • Santa Barbara test => entropy profile core • Cooling halos => no SPH blobs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend