g 2 tensor product splines
play

G 2 Tensor Product Splines over Extraordinary Vertices Charles - PowerPoint PPT Presentation

G 2 Tensor Product Splines over Extraordinary Vertices Charles Loop Scott Schaefer Microsoft Research Texas A&M University Spline Rings Spline Rings Spline Rings Problems with Catmull-Clark Subdivision Composed of an infinite


  1. G 2 Tensor Product Splines over Extraordinary Vertices Charles Loop Scott Schaefer Microsoft Research Texas A&M University

  2. Spline Rings

  3. Spline Rings

  4. Spline Rings

  5. Problems with Catmull-Clark Subdivision • Composed of an infinite number of patches – Hard to evaluate/analyze/process – Not well suited to GPU pipeline • Not C 2 at extraordinary vertices – Not “Class A” surface – Limits use to entertainment scenarios

  6. Problem Statement Fill the hole in an n-valent Catmull-Clark spline ring with n tensor product patches that join each other and the spline ring with second order smoothness.

  7. Geometric Continuity k k G C • Definition      P P P P [DeRose ’85]   i i 1 i i 1 • Correspondence Map   2 2 ฀ ฀ : – Assumed to be identity on edge • Matrix Equation   D D  P i+1 i i 1 P i  • Chain Rule Matrix 

  8. Cocycle Condition • For cyclic collection of patches incident on a common vertex I           D D [Hahn ’89]   0 0 n 1 n 2 1 0  1 P 0 ,…,P n-1  0  n -1

  9. Correspondence Maps 1

  10. Correspondence Maps 1 2

  11. Correspondence Maps 3 1 2

  12. Correspondence Maps 1 2 interior

  13. Correspondence Maps 3 2 exterior

  14. Interior Correspondence Maps   2 2 ฀ ฀ : n      2 0 cos               1 1 u v , b u n b v n x ,     1 1      2 0 sin               n 1 1 u v , b u b v   n y ,    0 tan       n

  15. Interior Correspondence Maps Interior Correspondence Map

  16. Interior Correspondence Maps Cocycle Condition:   n        1 1 R n n n at type 1 vertex

  17. Interior Correspondence Maps   1 n        1 R n n n

  18. Interior Correspondence Maps      1 n n

  19. Exterior Correspondence Maps 3 2

  20. Exterior Correspondence Maps       q u v , u , v      s u v , v u , Cocycle Condition at type 2 vertex:       1 1                    1 1 1 1 Q S R Q S R n n n n n m m m m m

  21. Exterior Correspondence Maps             1 1                    1 1 1 1 Q S R Q S R n n n n n m m m m m

  22. Exterior Correspondence Maps    1           1 1 Q S R n n n n n

  23. Exterior Correspondence Maps   2 2 ฀ ฀ :     n  s u v , v u , Cocycle Condition at type 3 vertex:                                  1     1     1     1 S S S S S S S S k k l l m m n n

  24. Exterior Correspondence Maps    n u v , 4 5 8 ∞ n = 3

  25. Boundary Data    10 11 21 a a a    i 2 i 1 i 1   10 00 10 20 a a a a          T    3 i 1 i i 1 i 1 3 H u v , B u B v   i 11 10 11 12 a a a a    i 1 i i i   12 20 21 22   a a a a  i 1 i i i

  26. Boundary Data    10 11 21 a a a    i 2 i 1 i 1   10 00 10 20 a a a a          T    3 i 1 i i 1 i 1 3 H u v , B u B v   i 11 10 11 12 a a a a    i 1 i i i   12 20 21 22   a a a a  i 1 i i i

  27. Patch Smoothness Constraints • External Constraints            j j  1, 1, , 0,1,2 P t H t j  j i  j i n u u • Internal Constraints                   j k j k 1 1    0, ,0 , 0,1,2 P t P r t j k   j k i  j k i 1 n n n u v u v • Constraint System      55 64 7 64 n n n n ฀ ฀ C , W Cp Wa

  28. Bicubic Energy 1 1         2 2       4 4 energy P u v , P u v , du dv  i  i 4 4 u v 0 0

  29. Bicubic Energy 1 1         2 2       4 4 energy P u v , P u v , du dv  i  i 4 4 u v 0 0   T p E p i i

  30. Constrained Minimization       T p 0 E C        a  W  C 0           E 0 0    ˆ      ˆ  H p 0 E 0 E c     j        j  E    , j 0, n 1  ˆ   ˆ  ˆ 0     w c 0         j j j    0 0 E

  31. Basis Functions

  32. Support Constraints

  33. Support Constraints

  34. Basis Function Plots

  35. Results Catmull-Clark This Scheme Loop ‘04

  36. Results Catmull-Clark This Scheme

  37. Results Catmull-Clark This Scheme

  38. Boundary Basis Functions

  39. Results Catmull-Clark This Scheme

  40. Results Catmull-Clark This Scheme

  41. Conclusions • G 2 piecewise polynomial surface – Bidegree 7 – Finitely many pieces – Handle meshes with boundary • Negative weights – Convex minimum? • Valence 3 has high curvature hot spots – Solve as special case?

  42. Thank you for your attention

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend