g 2
play

( g 2 ) and new physics Magnetic moment Dominik Stckinger, TU - PowerPoint PPT Presentation

( g 2 ) and new physics Magnetic moment Dominik Stckinger, TU Dresden ( g 2 ) and new physics SSP2012, June 2012, Groningen Magnetic moment 10 a SM = ( 28 : 6 8 ) 10 10 ! (?? 1 : 6 exp


  1. ( g � 2 ) � and new physics Magnetic moment Dominik Stöckinger, TU Dresden ( g � 2 ) � and new physics SSP2012, June 2012, Groningen Magnetic moment

  2. � 10 � a SM = ( 28 : 6 � 8 ) � 10 � � � 10 ! (?? � 1 : 6 exp � 3 th ) � 10 Note: discrepancy almost twice as large as a SM ; weak � Introduction � � 2 � a SM ; weak � � couplings � � a exp � in general I Different types of new physics lead to very different a � (N.P I compare with LHC, subleading contributions M W but we expect: a NP ( g � 2 ) M NP � and new physics Outline New physics contributions to a .) SUSY Alternatives: Extra dimensions, light particles, . . . Magnetic moment

  3. � constraints � Outline Impact on New Physics in general 1 SUSY 2 Can explain the deviation — a LHC vs a Subleading contributions ( g � 2 ) � and new physics Alternatives to SUSY 3 Conclusions 4 Backup 5 Magnetic moment Impact on New Physics in general

  4. � � R � L � 2 = chirality-flipping interaction � R � L � = chirality-flipping interaction as well New physics contributions to a g m ( g � 2 ) � and new physics Magnetic moment Impact on New Physics in general

  5. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � Very different contributions to a C generally: m M classify new physics: C very model-dependent ( g � 2 ) � and new physics Magnetic moment Impact on New Physics in general

  6. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � O ( 1 ) Very different contributions to a C generally: m M � O ( : : : ) 4 � classify new physics: C very model-dependent � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � ( g � 2 ) � and new physics Z Magnetic moment Impact on New Physics in general

  7. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � O ( 1 ) Very different contributions to a � ), unparticles C generally: m M � O ( : : : ) 4 � classify new physics: C very model-dependent � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � supersymmetry (tan ( g � 2 ) � and new physics [Cheung, Keung, Yuan ’07] extra dim. (ADD/RS) ( n c ). . . [Davioudasl, Hewett, Rizzo ’00] [Graesser,’00][Park et al ’01][Kim et al ’01] Z Magnetic moment Impact on New Physics in general

  8. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � O ( 1 ) Very different contributions to a � ), unparticles C generally: m M � O ( : : : ) 4 � classify new physics: C very model-dependent � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � radiative muon mass generation . . . [Czarnecki,Marciano ’01] [Crivellin, Girrbach, Nierste ’11][Dobrescu, Fox ’10] supersymmetry (tan ( g � 2 ) � and new physics [Cheung, Keung, Yuan ’07] extra dim. (ADD/RS) ( n c ). . . [Davioudasl, Hewett, Rizzo ’00] [Graesser,’00][Park et al ’01][Kim et al ’01] Z Magnetic moment Impact on New Physics in general

  9. � � m � 2 Æ m ( N : P : ) � � = ; Æ a ( N : P : ) = O ( C ) � � Very different contributions to a O ( 1 ) C generally: � ), unparticles m M � classify new physics: C very model-dependent O ( : : : ) 4 � Very useful constraints on new physics � 0 , W 0 , UED, Littlest Higgs (LHT). . . O ( ) 4 � radiative muon mass generation . . . [Czarnecki,Marciano ’01] [Crivellin, Girrbach, Nierste ’11][Dobrescu, Fox ’10] ( g � 2 ) � and new physics supersymmetry (tan [Cheung, Keung, Yuan ’07] extra dim. (ADD/RS) ( n c ). . . [Davioudasl, Hewett, Rizzo ’00] [Graesser,’00][Park et al ’01][Kim et al ’01] Z Magnetic moment Impact on New Physics in general

  10. � constraints � Outline Impact on New Physics in general 1 SUSY 2 Can explain the deviation — a LHC vs a Subleading contributions ( g � 2 ) � and new physics Alternatives to SUSY 3 Conclusions 4 Backup 5 Magnetic moment SUSY

  11. � 2 in the MSSM: chirality flips, � � , and H u + ~ + ~ h H u i � = ; � = H u � H d transition h H d i + ~ + ~ g � R � L � ~ � � / � h H u i � = m � � ! a SUSY / tan � sign ( � ) � � tan � H W u / tan � = 1 : : : 50 (and / sign( � )) tan H W d some terms ( g � 2 ) � and new physics m 2 M 2 SUSY potential enhancement Magnetic moment SUSY

  12. � 2 in the MSSM � 100 GeV � 2 � 10 tan � 12 � 10 � sign ( � ) � g � 10 deviation! ( 28 : 6 � 8 ) � 10 numerically � , large tan � /small M SUSY preferred a SUSY M SUSY SUSY could be the origin of the observed ( g � 2 ) � and new physics positive however, beware of the fine print. . . Precise analysis justified! Magnetic moment SUSY

  13. � central complement for SUSY parameter analyses a � 1 ) � sharply distinguishes SUSY models ( g � 2 ) � and new physics SPS benchmark points LHC Inverse Problem (300fb [v.Weitershausen,Schäfer, can’t be distinguished at LHC Stöckinger-Kim,DS ’10] [Sfitter: Adam, Kneur, Lafaye, [Hertzog, Miller, de Rafael, Roberts, DS ’07] Plehn, Rauch, Zerwas ’10] a helps measure parameters Magnetic moment SUSY

  14. � central complement for SUSY parameter analyses a � 1 ) � sharply distinguishes SUSY models ( g � 2 ) � and new physics SPS benchmark points LHC Inverse Problem (300fb [v.Weitershausen,Schäfer, can’t be distinguished at LHC Stöckinger-Kim,DS ’10] [Sfitter: Adam, Kneur, Lafaye, [Hertzog, Miller, de Rafael, Roberts, DS ’07] Plehn, Rauch, Zerwas ’10] a helps measure parameters Next: Tension in SUSY models — subleading contributions Magnetic moment SUSY

  15. � > � 1TeV < � 700GeV ~ ; ~ �;� ~ The tension is increasing = 126 GeV(?) > � 1TeV ; � small ~ ~ a LHC: m m q g m h finetuning m m t t ( g � 2 ) � and new physics also: dark matter, b-physics, FCNC/CP-constraints Magnetic moment SUSY

  16. � vs LHC-bounds on squarks/gluinos vs potential m h -measurement ~ � – m h ~ Constrained models I a CMSSM, LHC, m CMSSM, LHC, m =126 GeV =126 GeV h h CMSSM: link m q – m SM ± ± a - a (2.9 0.8 0.2)E-9 0.3E-9 µ µ → γ ± ± BR(b s ) (3.55 0.26 0.23)E-4 2.88E-4 → τ ν ± BR(B ) (1.67 0.39)E-4 0.99E-4 incompatible → µ + µ - ± BR(B ) <(4.50 0.30)E-9 3.61E-9 s ∆ ± ± -1 m (ps ) 17.78 0.12 5.20 20.58 s 2 θ l ± sin 0.23113 0.00021 0.23138 eff ± ± m (GeV) 80.385 0.015 0.010 80.386 W ± ± m (GeV) 126.0 2.0 3.0 124.4 h LHC Ω 2 ± ± h 0.1123 0.0035 0.0112 0.1112 CDM σ SI (pb ) 2.44E-11 0 1 2 3 σ |Meas.-Fit|/ ( g � 2 ) � and new physics NUHM1, LHC, m NUHM1, LHC, m =126 GeV =126 GeV h h ± ± a - a SM (2.9 0.8 0.2)E-9 1.8E-9 µ µ → γ ± ± BR(b s ) (3.55 0.26 0.23)E-4 3.12E-4 NUHM1: m soft → τ ν ± independent BR(B ) (1.67 0.39)E-4 0.91E-4 h → µ µ ± + - BR(B ) <(4.50 0.30)E-9 4.59E-9 s ∆ -1 ± ± m (ps ) 17.78 0.12 5.20 20.88 s marginally compatible 2 θ l ± sin 0.23113 0.00021 0.23148 eff ± ± m (GeV) 80.385 0.015 0.010 80.367 W ± ± finetuning? m (GeV) 126.0 2.0 3.0 118.8 h LHC Ω 2 ± ± h 0.1123 0.0035 0.0112 0.1094 CDM σ SI (pb ) 1.81E-10 0 1 2 3 σ |Meas.-Fit|/ Magnetic moment SUSY

  17. ~ ! FCNC, finetuning ok � 0, would need m � m � � ~ ~ Constrained models II ~ ; � ~ � , m h , LHC-bounds [Endo, Hamaguchi, Iwamoto, Yokozaki ’11]. . . “Natural SUSY” [Barger, Huang, Ishida, Keung ’12]. . . t 1st, 2nd generation very heavy, light > � 600GeV ~ ~ ; a q � Gauge-mediated SUSY breaking (FCNC ok) + extra matter increase m h , lower m q reconcile a ( g � 2 ) � and new physics Compressed SUSY [Martin, LeCompte ’11] hidden at LHC for m q g compatible with a Still tension/models might be be ruled out soon! Magnetic moment SUSY

  18. = � � v d � Alternative: radiative muon mass in SUSY � = 0 � 0 � L ~ � R H u ~ � via A � ! 0, tan � ! 1 � via coupling to v u m tree 1 generate m [Borzumati et al ’99][Crivellin et al ’11] ( g � 2 ) � and new physics v d 2 generate m [Dobrescu, Fox ’10][Altmannshofer, Straub ’10] Magnetic moment SUSY

  19. / tan � / log M SUSY / tan � � m t � ~ � 0 ; � Status of SUSY prediction ~ � 0 ; � � 1-Loop 2-Loop (SUSY 1L) 2-Loop (SM 1L) �; � � � � � � � �; ~ � ~ ~ � ; ~ � � e.g. e.g. m t f ( tan � ) 2 f H [Degrassi,Giudice ’98] [Fayet ’80],. . . ( g � 2 ) [Chen,Geng’01][Arhib,Baek ’02] � and new physics [Marchetti, Mertens, Nierste, DS ’08] [Kosower et al ’83],[Yuan et al ’84],. . . [Heinemeyer,DS,Weiglein ’03] [Schäfer, Stöckinger-Kim, [Lopez et al ’94],[Moroi ’96] [Heinemeyer,DS,Weiglein ’04] v. Weitershausen, DS ’10] complete photonic complete aim: full calculation (65000 diagrams) Magnetic moment SUSY

  20. � R ~ Physics of subleading contributions (examples) ~ ~ ~ ~ ~ ~ � L � R � L � R � L ~ � R ~ � R ~ / � for � ! 1 / other sign! 1-loop ! large � -parameter ! Use if � M 2 < 0, light � R ~ 1-loop bino H 2 B B B H 1 B ( g � 2 ) � and new physics Magnetic moment SUSY

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend