abdus salam physics beyond the standard model
play

Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi - PowerPoint PPT Presentation

Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Abdus Salam Memorial Meeting, Singapore. January 2016 1 / 36 (1964) 2 / 36 (1993) 3 /


  1. Abdus Salam & Physics Beyond the Standard Model Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Abdus Salam Memorial Meeting, Singapore. January 2016 1 / 36

  2. (1964) 2 / 36

  3. (1993) 3 / 36

  4. BCSPIN : 1989- Bangladesh, China, SriLanka, Pakistan, India, Nepal; Salam present in the first school in 1989; also King of Nepal. BC(V)SPIN / Asian American Advanced Study Institute 2009- Held in Nepal, India, China, Vietnam, Mexico (2014). Supported by ICTP, NSF (USA), China, Mexico, Univ. of Delaware, Mitchell Foundation (Texas A& M), ... 4 / 36

  5. 5 / 36

  6. (2007) 6 / 36

  7. (2007) 7 / 36

  8. Physics Beyond the Standard Model Neutrino Physics: SM + Gravity suggests m ν � 10 − 5 eV, which disagrees with neutrino data; Dark Matter: SM offers no plausible DM candidate; Origin of matter in the universe: Electric Charge Quantization: Unexplained in the SM; CMB Isotropy / Anisotropy, Origin of Structure require ideas beyond Hot Big Bang Cosmology (which comes from SM + General Relativity.) Strong CP Problem. 8 / 36

  9. Quark-Lepton Unification, lepton number as 4th color, electric charge quantization, neutrino mass, ... (with JCP); Baryon number violation (with JCP); Superfields & R- symmetry (with John Strathdee); Kaluza-Klein Theories (JS, Randjbar-Daemi,...). 9 / 36

  10. Sky is the Limit Matter Multiplets in Grand Unification Pati-Salam → SU (4) c × SU (2) L × SU (2) R : (4 , 2 , 1) + (4 , 1 , 2) � u u u ν e � = ⇒ 16 chiral fields; d d d ℓ L,R SM neutrinos have non-zero masses. Georgi-Glashow → SU (5) : 10 + 5 15 chiral fields; Massless neutrinos Fritzsch-Minkowski, Georgi → SO (10) : SU (5) 16 − plet − → 10 + 5 + 1( ν R ) 10 / 36

  11. b - τ YU in SU (4) × SU (2) L × SU (2) R (422) m 16 , m H i , M i , A 0 , tan β, sign ( µ ) m 16 ≡ Universal soft SUSY breaking (SSB) sfermion mass m H d ,H u ≡ Universal SSB MSSM Higgs masses. M i ≡ SSB gaugino masses. M 1 = 3 5 M 2 + 2 5 M 3 A 0 ≡ Universal SSB trilinear interaction tan β = v u v d µ ≡ SUSY bilinear Higgs parameter µ > 0 11 / 36

  12. Random scans for the following parameter range (NUHM2): 0 ≤ m 16 ≤ 20 TeV , 0 ≤ M 2 ≤ 5 TeV , 0 ≤ M 3 ≤ 5 TeV , − 3 ≤ A 0 /m 16 ≤ 3 , 0 ≤ m H d ≤ 20 TeV , 0 ≤ m H u ≤ 20 TeV 2 ≤ tan β ≤ 60 , µ > 0 , m t = 173 . 3 GeV . 12 / 36

  13. Point 1 Point 2 Point 3 m 0 1086 . 39 460 . 72 497 . 64 M 1 979 . 1 3313 . 58 3606 . 12 M 2 979 . 1 4579 . 38 4908 . 89 M 3 979 . 1 1414 . 89 1651 . 94 A 0 − 3244 . 79 − 1270 . 88 − 1390 . 14 tan β 28 . 49 15 . 41 16 . 47 µ 1853 176 746 m h 124 . 06 124 124 . 1 m H 1862 2856 3109 m A 1850 2838 3088 m H ± 1864 2857 3110 m ˜ 424 , 807 180 , 182 759 , 762 χ 0 1 , 2 m ˜ 1845 , 1847 1477 , 3757 1620 , 4032 χ 0 3 , 4 m ˜ 810 , 1850 188 , 3754 780 , 4023 χ ± 1 , 2 m ˜ 2180 3048 3515 g m ˜ 2239 , 2174 3842 , 2719 4253 , 3118 uL,R m ˜ 1084 , 1744 1039 , 3394 1467 , 3768 t 1 , 2 m ˜ 2240 , 2166 3843 , 2629 4254 , 3025 dL,R m ˜ 1721 , 1947 2524 , 3436 2905 , 3808 b 1 , 2 m ˜ 1261 2980 3182 ν 1 m ˜ 1098 2972 3164 ν 3 m ˜ 1265 , 1144 2978 , 1296 3181 , 1407 eL,R m ˜ 719 , 1107 1189 , 2961 1276 , 3156 τ 1 , 2 9 . 24 × 10 − 12 1 . 79 × 10 − 10 2 . 84 × 10 − 10 σ SI (pb) 2 . 46 × 10 − 09 2 . 29 × 10 − 06 2 . 36 × 10 − 07 σ SD (pb) Ω CDM h 2 7 . 06 0 . 007 0 . 11 ∆ EW 827 15 . 4 134 ∆ HS 1110 51 . 3 181 13 / 36

  14. Point 1 Point 2 Point 3 Point 4 Point 5 m 16 12730 9839 17640 7477 11940 M 1 1172 1903 1462 1496 1700 M 2 1820 2881 2327 2335 2660 M 3 550 435.3 165 237 260 m Hd , m Hu 11720, 14690 5967, 7279 12890, 5640 6624, 1513 3111, 5478 tan β 36.3 41.3 52.9 32.4 39.0 A 0 /m 0 -2.07 -2.41 -2.62 -2.56 -2.63 m t 173.3 173.3 173.3 173.3 173.3 µ 4957 9186 19086 8552 13149 0 . 82 × 10 − 11 0 . 72 × 10 − 11 0 . 28 × 10 − 11 0 . 97 × 10 − 11 0 . 45 × 10 − 11 ∆( g − 2) µ m h 126.4 125.9 123.9 125 123.3 m H 2262 2157 1799 7900 3058 m A 2247 2144 1788 7849 3039 m H ± 2264 2160 1802 7901 3061 m ˜ 641,1682 918, 2585 770,2276 715, 2087 837, 2441 χ 0 1 , 2 m ˜ 4973, 4974 9137, 9137 18924, 18924 8537, 8537 13101, 13101 χ 0 3 , 4 m ˜ 1697, 4979 2604, 9133 2281, 18927 2104, 8534 2457, 13090 χ ± 1 , 2 m ˜ 1625 1314 879 790 943 g m ˜ 12743, 12860 9988, 9900 17708, 17538 7616, 7393 12019, 11977 uL,R m ˜ 689, 6131 1042, 4668 5577, 7056 781, 4077 901, 5263 t 1 , 2 m ˜ 12743, 12715 9988, 9853 17708, 17721 7617, 7525 12019, 11933 dL,R m ˜ 6234, 8566 4706, 5997 6884, 7646 4125, 5259 5293, 7047 b 1 , 2 m ˜ 12859 10035 17634 7562 12091 ν 1 m ˜ 11262 8267 12950 6496 10076 ν 3 m ˜ 12846, 12581 10027, 9814 17630, 17854 7554, 7623 12081, 11906 eL,R m ˜ 9129, 11263 5711, 8239 5525, 12875 5399, 6519 7366, 10045 τ 1 , 2 0 . 71 × 10 − 13 0 . 16 × 10 − 13 0 . 70 × 10 − 14 0 . 62 × 10 − 14 0 . 27 × 10 − 13 σ SI (pb) 0 . 18 × 10 − 9 0 . 19 × 10 − 11 0 . 14 × 10 − 14 0 . 41 × 10 − 12 0 . 59 × 10 − 16 σ SD (pb) Ω CDM h 2 0.13 0.86 0.45 0.09 0.123 R 1.06 1.18 1.04 1.19 1.09 14 / 36

  15. Those Guys from Harvard 15 / 36

  16. Those Guys from Harvard 16 / 36

  17. The Biggest Hoax in Physics? Inflationary Cosmology Successful Primordial Inflation should: Explain flatness, isotropy; Provide origin of δT T ; Offer testable predictions for n s , r , dn s /d ln k ; Recover Hot Big Bang Cosmology; Explain the observed baryon asymmetry; Offer plausible CDM candidate; Physics Beyond the SM? 17 / 36

  18. Cosmic Inflation • Inflation can be defined as: d ⎛ ⎞ 1 < a decreasing comoving horizon ⎜ ⎟ 0 , dt ⎝ aH ⎠ > a & & an accelerated expansion 0 , < − ρ P a negative pressure repulsive gravity / 3 , drives inflation • Consider a scalar field φ 1 & ρ φ = φ + φ ≈ ≈ Ht 2 V V a t e ( ) , ( ) inflation 2 Slow rolling scalar field acts as an inflaton 18 / 36

  19. Cosmic Inflation Tiny patch ~10 -28 cm > 1 cm after 60 e-foldings (time constant ~10 -38 sec) radiation dominated universe (hot big bang) Inflation over Quantum fluctuations of inflation field give rise to nearly scale invariant, adiabatic, Gaussian density perturbations Seed for forming large scale structure 19 / 36

  20. ⎛ ⎞ k • Solution to the Flatness Problem ⎜ Ω − = ⎟ 1 ⎜ ⎟ ⎝ aH 2 ⎠ ( ) Ω − = Ω − − N → = Δ ≥ N e 2 1 1 0 , where H t 50 f i • Solution to the Horizon Problem Image courtesy of W. Kinney 20 / 36

  21. Slow-roll Inflation Inflation is driven by some potential V ( φ ) : Slow-roll parameters: � 2 m 2 � � � V ′ V ′′ , η = m 2 p ǫ = . p 2 V V The spectral index n s and the tensor to scalar ratio r are given by d ln k , r ≡ ∆ 2 n s − 1 ≡ d ln ∆ 2 R R , h ∆ 2 where ∆ 2 h and ∆ 2 R are the spectra of primordial gravity waves and curvature perturbation respectively. Assuming slow-roll approximation (i.e. ( ǫ, | η | ) ≪ 1 ), the spectral index n s and the tensor to scalar ratio r are given by n s ≃ 1 − 6 ǫ + 2 η , r ≃ 16 ǫ . 21 / 36

  22. The tensor to scalar ratio r can be related to the energy scale of inflation via V ( φ 0 ) 1 / 4 = 3 . 3 × 10 16 r 1 / 4 GeV. The amplitude of the curvature perturbation is given by � V/m 4 � φ = φ 0 = 2 . 43 × 10 − 9 ( WMAP7 normalization ). ∆ 2 1 p R = 24 π 2 ǫ The spectrum of the tensor perturbation is given by � � ∆ 2 2 V h = . 3 π 2 m 4 φ = φ 0 P The number of e -folds after the comoving scale l 0 = 2 π/k 0 has crossed the horizon is given by � φ 0 � V 1 � N 0 = dφ . m 2 φ e V ′ p Inflation ends when max [ ǫ ( φ e ) , | η ( φ e ) | ] = 1 . 22 / 36

  23. R. Symmetry and Inflation [Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands ’94] [Lazarides, Schaefer, Shafi ’97][Senoguz, Shafi ’04; Linde, Riotto ’97] Attractive scenario in which inflation can be associated with symmetry breaking G − → H Simplest inflation model is based on W = κ S (Φ Φ − M 2 ) S = gauge singlet superfield, (Φ , Φ) belong to suitable representation of G Need Φ , Φ pair in order to preserve SUSY while breaking G − → H at scale M ≫ TeV, SUSY breaking scale. R-symmetry Φ Φ → Φ Φ , S → e iα S, W → e iα W ⇒ W is a unique renormalizable superpotential 23 / 36

  24. Tree Level Potential V F = κ 2 ( M 2 − | Φ 2 | ) 2 + 2 κ 2 | S | 2 | Φ | 2 SUSY vacua |� Φ �| = |� Φ �| = M, � S � = 0 4 � S �� M 2 0 2.0 1.5 V � Κ 2 M 4 1.0 0.5 0.0 1 0 � � �� M � 1 24 / 36

  25. Tree level + radiative corrections + minimal K¨ ahler potential yield: n s = 1 − 1 N ≈ 0 . 98 . δT/T proportional to M 2 /M 2 p , where M denotes the gauge symmetry breaking scale. Thus we expect M ∼ M GUT for this simple model. Since observations suggest that n s lie close to 0.97, there are at least two ways to realize this slightly lower value: (1) include soft SUSY breaking terms, especially a linear term in S ; (2) employ non-minimal K¨ ahler potential. r � 0 . 02 in these models 25 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend