fundamentals
play

FUNDAMENTALS J an Novk Scattering Disney Research Absorption - PowerPoint PPT Presentation

FUNDAMENTALS J an Novk Scattering Disney Research Absorption FUNDAMENTALS Absorption Scattering Emission http://commons.wikimedia.org http://coclouds.com http://wikipedia.org MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT


  1. FUNDAMENTALS J an Novák 
 Scattering Disney Research Absorption

  2. FUNDAMENTALS Absorption Scattering Emission http://commons.wikimedia.org http://coclouds.com http://wikipedia.org MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 2

  3. RADIATIVE TRANSFER d z Radiance d z d A d z L ( x , ω ) x , ω ) x x MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 3

  4. ABSORPTION d z x ) L ( x , ω ) x , ω ) x d L µ a ( - absorption coefficient d z = − µ a ( x ) L ( x , ω ) MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 4

  5. OUT-SCATTERING d z x ) L ( x , ω ) x , ω ) x d L µ s ( - scattering coefficient d z = − µ s ( x ) L ( x , ω ) MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 5

  6. IN-SCATTERING d z x ) L ( x , ω ) x , ω ) x In-scattered radiance Z L s ( y , ω ) = S 2 f p ( ω , ¯ ω ) L ( y , ¯ ω )d¯ ω d L µ s ( - scattering coefficient d z = µ s ( x ) L s ( x , ω ) MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 6

  7. EMISSION d z x ) L ( x , ω ) x , ω ) x d L L e - emitted radiance d z = µ a ( x ) L e ( x , ω ) MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 7

  8. RADIATIVE TRANSFER EQUATION Out-scattering Absorption d L ( x , ω ) − µ a ( x ) L ( x , ω ) = − µ s ( x ) L ( x , ω ) = d z = µ a ( x ) L e ( x , ω ) + = µ s ( x ) L s ( x , ω ) + In-scattering Emission [Chandrasekhar 1960] MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 8

  9. RADIATIVE TRANSFER EQUATION Extinction coefficient µ t ( x ) = µ a ( x ) + µ s ( x ) d L ( x , ω ) Losses = = − µ t ( x ) L ( x , ω ) d z Gains = µ a ( x ) L e ( x , ω ) + = µ s ( x ) L s ( x , ω ) + What about a finite-length beam? d z [Chandrasekhar 1960] MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 9

  10. RTE — INTEGRAL FORM RADIATIVE TRANSFER EQUATION Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 d L ( x , ω ) Losses = = − µ t ( x ) L ( x , ω ) d z Gains = µ a ( x ) L e ( x , ω ) = µ s ( x ) L s ( x , ω ) + + What about a finite-length beam? d z MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 10

  11. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 R y is the fraction of light that makes 
 T ransmittance T ( x , y ) = e − 0 µ t ( s )d s it from y to x d z Optical thickness Z y T ( x , y ) τ ( x , y ) = µ t ( s )d s y x 0 MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 11

  12. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 Emission d z y x MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 12

  13. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 In-scattering Z L s ( y , ω ) = 2 f p ( ω , ¯ ω ) ¯) L ( y , ¯ ω )d¯ ω S 2 Phase function d z y x MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 13

  14. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 + T ( x , z ) L o ( z , ω ) Background radiance d z z x Surface MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 14

  15. VOLUME RENDERING EQUATION Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 + T ( x , z ) L o ( z , ω ) How do we solve it? MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 15

  16. MONTE CARLO INTEGRATION Ray Sphere Path space Z F = f ( x ) d x D N h F i = 1 f ( x i ) X =1 p ( x i ) N i =1 Probability density function (PDF) MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 16

  17. VRE ESTIMATOR Z z T ( x , y ) h i F i h F L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y p ( y ) 0 T ( x , z ) + T + T ( x , z ) L o ( z , ω ) P ( z ) p ( y ) - probability density of distance y P ( z ) - probability of exceeding distance z MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 17

  18. VRE ESTIMATOR T ransmittance estimation Z z T ( x , y ) h i F i h F L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y p ( y ) 0 T ( x , z ) + T + T ( x , z ) L o ( z , ω ) P ( z ) Distance sampling MONTE CARLO METHODS FOR VOLUMETRIC LIGHT TRANSPORT SIMULATION — FUNDAMENTALS 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend