fundamentals
play

FUNDAMENTALS Absorption Scattering MONTE CARLO METHODS FOR - PowerPoint PPT Presentation

FUNDAMENTALS Absorption Scattering MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING FUNDAMENTALS 1 FUNDAMENTALS Absorption Scattering Emission http://commons.wikimedia.org http://coclouds.com http://wikipedia.org MONTE


  1. FUNDAMENTALS Absorption Scattering MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 1

  2. FUNDAMENTALS Absorption Scattering Emission http://commons.wikimedia.org http://coclouds.com http://wikipedia.org MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 2

  3. RADIATIVE TRANSFER d z Radiance d z d A d z L ( x , ω ) x , ω ) x x MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 3

  4. ABSORPTION d z x ) L ( x , ω ) x , ω ) x d L µ a ( - absorption coefficient d z = − µ a ( x ) L ( x , ω ) MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 4

  5. OUT-SCATTERING d z x ) L ( x , ω ) x , ω ) x d L µ s ( - scattering coefficient d z = − µ s ( x ) L ( x , ω ) MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 5

  6. IN-SCATTERING d z x ) L ( x , ω ) x , ω ) x In-scattered radiance Z L s ( y , ω ) = S 2 f p ( ω , ¯ ω ) L ( y , ¯ ω )d¯ ω d L µ s ( - scattering coefficient d z = µ s ( x ) L s ( x , ω ) MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 6

  7. EMISSION d z x ) L ( x , ω ) x , ω ) x d L L e - emitted radiance d z = µ a ( x ) L e ( x , ω ) MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 7

  8. RADIATIVE TRANSFER EQUATION Out-scattering Absorption d L ( x , ω ) Losses − µ a ( x ) L ( x , ω ) = − µ s ( x ) L ( x , ω ) = d z Gains = µ a ( x ) L e ( x , ω ) + = µ s ( x ) L s ( x , ω ) + In-scattering Emission [Chandrasekhar 1960] MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 8

  9. RADIATIVE TRANSFER Extinction coefficient µ t ( x ) = µ a ( x ) + µ s ( x ) d L ( x , ω ) Losses = = − µ t ( x ) L ( x , ω ) d z Gains = µ a ( x ) L e ( x , ω ) + = µ s ( x ) L s ( x , ω ) + What about a finite-length beam? d z [Chandrasekhar 1960] MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 9

  10. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 d L ( x , ω ) Losses = = − µ t ( x ) L ( x , ω ) d z Gains = µ a ( x ) L e ( x , ω ) = µ s ( x ) L s ( x , ω ) + + What about a finite-length beam? d z MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 10

  11. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 R y is the fraction of light that makes 
 T ransmittance T ( x , y ) = e − 0 µ t ( s )d s it from y to x d z Optical thickness Z y T ( x , y ) τ ( x , y ) = µ t ( s )d s y x 0 MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 11

  12. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 Emission In-scattering d z y x MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 12

  13. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 Z L s ( y , ω ) = 2 f p ( ω , ¯ ω ) ¯) L ( y , ¯ ω )d¯ ω S 2 Phase function d z y x MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 13

  14. PHASE FUNCTION 2 f p ( ω , ¯ ω ) ( ω , ( ω , ( ω , ( ω , ( ω , I sotropic Henyey-Greenstein Rayleigh Lorenz-Mie Lorenz-Mie small particles large particles MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 14

  15. PHASE FUNCTION Backward scattering PF Forward scattering PF Smoke Steam MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 15

  16. PHASE FUNCTION I sotropic PF Forward scattering PF MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 16

  17. RTE — INTEGRAL FORM Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 + T ( x , z ) L o ( z , ω ) Background radiance d z z x Surface MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 17

  18. VOLUME RENDERING EQUATION Z z h i L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y 0 + T ( x , z ) L o ( z , ω ) How do we solve it? MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 18

  19. MONTE CARLO INTEGRATION Ray Sphere Path space Z F = f ( x ) d x D N h F i = 1 f ( x i ) X =1 p ( x i ) N i =1 Probability density function (PDF) MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 19

  20. VRE ESTIMATOR Z z T ( x , y ) h i F i h F L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y p ( y ) 0 T ( x , z ) + T + T ( x , z ) L o ( z , ω ) P ( z ) p ( y ) - probability density of distance y P ( z ) - probability of exceeding distance z MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 20

  21. VRE ESTIMATOR T ransmittance estimation Z z T ( x , y ) h i F i h F L ( x , ω ) = T ( x , y ) µ a ( y ) L e ( y , ω ) + µ s ( y ) L s ( y , ω ) d y p ( y ) 0 T ( x , z ) + T + T ( x , z ) L o ( z , ω ) P ( z ) Distance sampling MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING — FUNDAMENTALS 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend