hi higgs mass ss in in d d term triggered dy dynamical su
play

Hi Higgs Mass ss in in D- D-term Triggered Dy Dynamical SU - PowerPoint PPT Presentation

Hi Higgs Mass ss in in D- D-term Triggered Dy Dynamical SU SUSY Br SY Breakin ing No Nobuhito Maru (Osa saka Ci City Universi sity) with H. H. It Itoyama a wi (Osa saka Ci City Universi sity) 3/5/2015 SCG CGT15@Nagoya


  1. Hi Higgs Mass ss in in D- D-term Triggered Dy Dynamical SU SUSY Br SY Breakin ing No Nobuhito Maru (Osa saka Ci City Universi sity) with H. H. It Itoyama a wi (Osa saka Ci City Universi sity) 3/5/2015 SCG CGT15@Nagoya Universi sity �

  2. Re Referenc nces � “126 GeV Higgs Boson Associated with D-Term Triggered Dynamical Supersymmetry Breaking” H. Itoyama and NM, Symmetry 2015 7 193 � “D-Term Triggered Dynamical Supersymmetry Breaking” H. Itoyama and NM, PRD88 (2013) 025012 � “D-Term Dynamical Supersymmetry Breaking Generating Split N=2 Gaugino Masses of Majorana-Dirac Type” H. Itoyama and NM, IJMPA27 (2012) 1250159 �

  3. Pl Plan � � In Introduction n ! A New Mechanism sm of D-term Dy Dynamical SU SUSY Br SY Brea eakin king ! Higgs s Mass ss vi via D- D-term ef effects � Su Summa mary �

  4. Introduction In n A Higgs boson was discovored, but… � -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb S/(S+B) Weighted Events / 1.5 GeV Events / 1.5 GeV Unweighted 1500 1500 γγ 1000 1000 120 130 m (GeV) γ γ Data 500 S+B Fit B Fit Component 1 ± σ 2 ± σ 0 110 120 130 140 150 m (GeV) γ γ

  5. No No in indicatio ion of of SU SUSY ( SY ($ BSM BSM) �

  6. Observed Higgs Mass 126 GeV � Severe constraints on MSSM parameter space (MSSM + light sparticles) � MSSM Extension + of heavy sparticles � MSSM �

  7. Observed Higgs Mass 126 GeV � Severe constraints on MSSM parameter space (MSSM + light sparticles) � MSSM Dirac Gaugino + scenario heavy sparticles �

  8. Dira Dirac Ga Gaug ugin ino Sc Scenario io � Fox, Nelson & Weiner (2012) � Gauge sector: N=2 extension � adj. chiral superfields added ( ) Φ a = SU 3 ( ) = ϕ a , ψ a , F ( ) , SU 2 ( ) , U 1 a Matter sector: N=1 � Dirac gaugino masses from � α Φ a = D 0 0 W d 2 θ 2 W ∫ L = λ a ψ a + … α a Λ Λ D 0 ≠ 0 ⊂ W 0 = θ α D 0 if in hidden U(1) � α

  9. Once gaugino masses are generated at tree level, sfermion masses are generated by RGE effects � Sfermion masses @1-loop � ( ) α a ⎡ ⎤ 2 2 log m ϕ a 2 ≈ C a f ⎢ ⎥ (a = SU(3) C , M  M λ a π SU(2) L , U(1) Y ) � 2 f ⎢ ⎥ M λ a ⎣ ⎦ nd � No SUSY flavor & CP problems � Flavor b Fl r blind LHC bounds relaxed Dirac gauginos � � 4 π /g � (gluino/squark Sfermions � production suppressed) � Kribs & Martin (2012) �

  10. A Ne New Mechanism sm of of D- D-term Dy Dynamical SU SUSY Br SY Breakin ing Itoyama & NM (2012,2013) �

  11. SUSY U(N) gauge theory ������������������������� with adjoint chiral supermultiplets � ( ) ∫ L = d 4 θ K Φ a , Φ a , V Kahler potential � ( ) W a α W ( ) + h . c . b + + d 2 θ Im 1 ∫ ⎡ ∫ ⎤ 2 F ab Φ a d 2 θ W Φ a ⎣ ⎦ α Superpotential � Gauge kinetic function �

  12. SUSY U(N) gauge theory ������������������������� with adjoint chiral supermultiplets � ( ) ∫ L = d 4 θ K Φ a , Φ a , V Kahler potential � ( ) W a α W ( ) + h . c . b + + d 2 θ Im 1 ∫ ⎡ ∫ ⎤ 2 F ab Φ a d 2 θ W Φ a ⎣ ⎦ α Superpotential � Gauge kinetic function � Fermion mass terms � ( ) ψ c λ a D 0 + F ab 0 Φ ( ) W a α W ( ) F 0 λ a λ b ∫ d 2 θ F ab Φ ⊃ F a 0 c Φ b α Dirac gaugino mass � ⊃ − 1 ( ) ( ) ψ a ψ b ∫ d 2 θ W Φ 2 ∂ a ∂ b W Φ

  13. Fermion mass ss terms � Mixed Majorana-Dirac type masses � ( ) ψ c λ a D 0 + F ab 0 Φ ( ) W a α W ( ) F 0 λ a λ b ∫ d 2 θ F ab Φ ⊃ F a 0 c Φ b α Dirac mass � ⊃ − 1 ( ) ( ) ψ a ψ b ∫ d 2 θ W Φ 2 ∂ a ∂ b W Φ <F>=0 assumed � ⎛ ⎞ 2 − ⎜ ⎟ 4 F abc D b 0 ⎛ ⎞ λ c ( ) − 1 ⎜ ⎟ 2 λ a ψ a ⎟ + h . c . ⎜ ⎜ ⎟ ψ c ⎝ ⎠ 2 − ∂ a c ∂ c W ⎜ ⎟ 4 F abc D b ⎝ ⎠

  14. D ≠ 0 & ∂ a ∂ a W ≠ 0 if � ⎡ ⎤ 2 ⎛ ⎞ 2 g aa ∂ a ∂ a W 2 D m ± = 1 ⎢ ⎥ 1 ± 1 + ⎜ ⎟ ⎢ ⎥ ∂ a ∂ a W ⎝ ⎠ ⎣ ⎦ 2 D ≡ − 4 F 0 aa D 0 ino (m � ) becomes Gaug Ga ugin s massi ssive by by nonzero <D> � SUSY is broken �

  15. D-term equation of motion: � ( ) D 0 = − g 00 F 0 cd ψ d λ c + F 0 cd ψ d λ c 1 2 2 Dirac bilinears s condensa sation � The value of <D 0 > will be determined by th the gap equation �

  16. Potential analysi sis � 3 constant ϕ ≡ ϕ 0 , D ≡ D 0 , F ≡ F 0 background fields: � Work in the region where <F 0 > << <D 0 > and perturbative � ( ) ∂ V D , ϕ , ϕ , F = F = 0 Stationary � gap equation � = 0 values � ∂ D ( ) D * , ϕ * , ϕ * ( ) ∂ V D , ϕ , ϕ , F = F = 0 = 0 ∂ ϕ ( ) ( ) , ϕ = ϕ * F , F ( ) , ϕ = ϕ * F , F ( ) , F , F ( ) ∂ V D = D * F , F = 0 F * , F ∂ F * D , ϕ , ϕ , F fixed

  17. D- D-term effective potential@1-loop � 4 c 1 ϕ , ϕ ( ) Δ 0 V = N 2 m ϕ ⎡ 2 Tree � ⎣ ( ) ( ) 2 − λ ( ) 4 log λ ( ) 4 log λ ⎤ 4 − λ 1 ( ) 2 + + − − + 32 π 2 c 2 Δ 0 ⎥ ⎦ ( ) , Δ 0 ≈ ′′′ F ( ) = 1 ± C 2 : constants � λ 2 1 ± 1 + Δ 0 2 D 0 ′′ W 1-loop part = CW potential gauge + adjoint chiral superfield contributions �

  18. Gap e Gap equa quatio ion � 0 = ∂ V Trivial solution Δ 0 =0 is NOT lifted � ∂ D ϕ , ϕ ⎡ ⎤ ⎧ ⎫ { } ⎪ ( ) − λ ( ) ⎪ 2 − ( ) 2 + 1 ( ) 2 + 1 1 1 ( ) 3 2log λ ( ) 3 2log λ ⎢ ⎥ + + − − = Δ 0 c 1 + 4 c 2 Δ 0 2 λ ⎨ ⎬ 64 π 2 ⎢ ⎥ 1 + Δ 0 ⎪ ⎪ ⎩ ⎭ ⎣ ⎦ Itoyama & NM (2012) � 1 ∂ V 1.0 ∆ 0 ∂ D 0.5 Δ 0 � 5 10 15 20 25 30 � 0.5 Nontrivial solution!! � � 1.0

  19. ( ) Δ 0* , ϕ * = ϕ * determined as the intersection point ( ) Δ 0* , ϕ = ϕ of two real curves in the plane � Δ 0 1.0 Solution of the gap eq. 0.8 ∂ V/ ∂ D=0 � 0.6 0.4 ∂ V/ ∂φ =0 � 0.2 ϕ Λ 0.0 0.0 0.2 0.4 0.6 0.8 1.0

  20. E � 0 in SUSY � Trivial solution Δ 0 =0 is NOT lifted � Our SUSY breaking vac. is a local min. � V( φ ) � 15 10 ! 0 ≠ 0 5 φ � 1 2 3 4 5 Δ 0 =0 �

  21. Metastability of our false se vacuum � <D> = 0 vacuum is not lifted ≠ � check if our vacuum <D> 0 is sufficiently long-lived � V( φ ) � Long-lived 15 for m φ << Δ � Λ � 10 5 our vac. � Δ V � (m φ Λ Δ 0 ) 2 � φ � 1 2 3 4 5 Δ φ � Δ 0 Λ ( Λ : cutoff scale) � Coleman & De Luccia(1980) � ( ) ⎡ ⎤ ⎡ ⎤ 2 ⎥ ≈ exp − Δ 0 Λ ∝ exp − Δ φ 4 Decay rate of ⎢ ⎥ ≪ 1 ⎢ Δ 0 Λ >> m φ � our vacuum � Δ V 2 m ϕ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦

  22. Numerical samples of solutions for the gap equation & the stationary condition for φ �

  23. Hi Higgs Mass ss vi via D- D-term Ef Effects ts � Itoyama & NM (2013) �

  24. Higgs Lagrangian � ∫ L Higgs = d 4 θ H u ⎡ † e − g Y V 1 − g 2 V 2 − 2 q u gV 0 H u + H d 1 − g 2 V 2 − 2 q d gV 0 H d ⎤ † e g Y V ⎣ ⎦ ( ) − B µ H u H d + h . c . ⎡ ⎤ ∫ + d 2 θ µ H u H d ⎣ ⎦ H u,d with U(1) charges q u,d assumed µ-term ��� q u + q d = 0 � <V 0 > = θ � <D 0 > �� additional Higgs mass@tree

  25. Higgs potential � 2 ⎛ † σ a † σ a ⎞ 2 g 2 ∑ V H = 2 H u + H d ( ) H u 2 H d ⎜ ⎟ ⎝ ⎠ 2 1 + Im F 0 YY ϕ 0 a ( ) 2 − H d 2 g Y 2 2 + ( ) H u 8 1 + Im F 0 YY ϕ 0 ( ) 2 + q d g H d 2 − D 0 1 2 + ( ) q u g H u 2 1 + Im F 0 YY ϕ 0 ( ) + B µ H u H d + h . c . 2 + H d ( ) 2 H u 2 + µ 2 + g Y ( ) ( ) 0 2 − H d 0 2 + q d g H d 0 2 − D 0 2 ! g 2 2 + 1 2 0 2 H u 2 q u g H u 8 ( ) − B µ H u 0 2 + H d ( ) 0 + h . c . 2 H u 0 2 + µ 0 H d Im F 0 YY ϕ 0 ≈ ϕ 0 Λ ≪ 1

  26. Higgs mass � 2 − 4 ! ⎡ ( ) ⎤ 2 + M A 2 − 2 + M A = 1 2 cos 2 2 β ! ! 2 2 2 M A m Higgs M Z M Z M Z ⎢ ⎥ ⎣ ⎦ 2 2 ≡ M Z 2 + q u 2 g 2 v 2 : q u = 0 ⇒ m Higgs ! = m MSSM Higgs 2 2 M Z Minimization conditions � ( ) 2 µ 2 + M Z q u g cos2 β − q u gv 2 cos2 β − 2 D 0 2 = 2 ≡ 2 B µ ( ) sin2 β = 2 µ 2 = − M Z 2 − q u g cos2 β − q u gv 2 cos2 β − 2 D 0 M A ⎡ ⎤ 2 ⎛ ⎞ cos2 β D 0 − = 1 2 − 2 q u g − 2 q u g 2 cos2 β + 4 ! 4 cos 2 2 β ⎢ ! ⎥ + 8 q u g D 0 2 cos2 β D 0 m Higgs M Z M Z ⎜ ⎟ ⎝ ⎠ ⎢ ⎥ ⎣ ⎦

  27. A plot for 126 GeV Higgs �

  28. Su Summa mary � ! Dirac gaugino scenario is s one of the interesting alternatives s ! A new dynamical mechanism sm of D- D-term DSB propose sed ! 126 GeV Higgs s mass ss possi ssible via D vi D-t -term tr m tree l ee level el e effects ts Work in progress (w/ Itoyama & Shindou) � Possi ssibility of 126 GeV Higgs s mass ss vi via t top-s -stop l loop e effects ts �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend