fu func nctio tions ns on t on the he la latt ttic ice
play

Fu Func nctio tions ns on t on the he La Latt ttic ice - PowerPoint PPT Presentation

Par arto ton n Di Dist stributi ribution on Fu Func nctio tions ns on t on the he La Latt ttic ice Huey-Wen Lin University of Washington Huey-Wen Lin Los Alamos National Lab 1 Outline Introduction to PDFs A brief


  1. Par arto ton n Di Dist stributi ribution on Fu Func nctio tions ns on t on the he La Latt ttic ice Huey-Wen Lin University of Washington Huey-Wen Lin — Los Alamos National Lab 1

  2. Outline § Introduction to PDFs  A brief overview on global analysis § Lattice QCD  Difficulties: why seek a new idea? § New Approach on the Lattice  Preliminary results on nucleon quark, helicity and transversity distributions Huey-Wen Lin — Los Alamos National Lab 2

  3. Parton Distribution Functions § Structure functions studied through scattering processes  Deep inelastic scattering beginning in 1960s at SLAC  Depend on energy scale ( Q 2 ) and quark momentum fraction ( x ) § “Parton”  1969 by Feynman: pointlike constituents inside hadron → now known to be quarks and gluons § Still limited knowledge  Many ongoing/planned experiments (EIC, LHeC, …) Huey-Wen Lin — Los Alamos National Lab 3

  4. Parton Distribution Functions § Quark distribution  Processes: DIS ( F 2 , σ ), Drell-Yan, W -asymmetry, Z -rapidity, ( γ +) jet, … spin-averaged/unpolarized  Experiment: BCDMS, NMC, SLAC, JLab, HERA, E866, CDF, DØ,… § Helicity distribution  Processes : polarized DIS, semi-inclusive DIS, spin-dep./long. polarized photo- and electroproduction of hadrons and charm, pp collisions  Experiment : EMC, HERMES, Hall A, CLAS, COMPASS, STAR, PHENIX, … § Transversity distribution  Process: single- spin asymmetry in SIDIS, …  Experiment: HERMES, COMPASS, Belle… transversely polarized Huey-Wen Lin — Los Alamos National Lab 4

  5. Global Analysis § Experiments cover diverse kinematics of parton variables  Global analysis takes advantage of all data sets Theory Exp’t Input Input Global Analysis of PDFs PDFs Applications Predictions Huey-Wen Lin — Los Alamos National Lab 5

  6. Global Analysis § Experiments cover diverse kinematics of parton variables  Global analysis takes advantage of all data sets PDFs Applications Predictions § Important fundamental QCD property  Exploration of the valence and sea-quark content of the nucleon § Important for BSM searches  Provides SM cross-section prediction for LHC new-physics search  IceCube PeV neutrinos can be explained by PDF uncertainties  Proton weak charge (medium-modification effects) Huey-Wen Lin — Los Alamos National Lab 6

  7. Global Analysis Theory Exp’t Input Input Global Analysis § Some choices made of PDFs for the analysis  Choice of data sets and kinematic cuts  Strong coupling constant α s ( M Z )  Uncertainties in perturbation theory (depends on process whether LO, NLO or NNLO is known)  Evolution of PDFs to different scales  Parametrization assumptions 2 1 + a x + a x a a 3 4 P x = f ( x , μ ) = a x ( 1 x ) P ( x ) 1 2 - ( ) 0 0 a x a a e 1 + e x 3 4 5 ( ) Discrepancies appear when data is scarce Huey-Wen Lin — Los Alamos National Lab 7

  8. Global Analysis Theory Exp’t Input Input Global Analysis § Some choices made of PDFs for the analysis  Choice of data sets and kinematic cuts  Strong coupling constant α s ( M Z )  Uncertainties in perturbation theory (depends on process whether LO, NLO or NNLO is known)  Evolution of PDFs to different scales  Parametrization assumptions § Sum rules to constrains the fit  Quark number, momentum, g A , SU(3) flavor symmetry… § Assumptions imposed where theory and exp’t are lacking  Charge symmetry, (anti- )strange, “sea” (antiquark) distribution… Huey-Wen Lin — Los Alamos National Lab 8

  9. Global Analysis Theory Exp’t Input Input Global Analysis § Some choices made of PDFs for the analysis  Choice of data sets and kinematic cuts  Strong coupling constant α s ( M Z )  Uncertainties in perturbation theory (depends on process whether LO, NLO or NNLO is known)  Evolution of PDFs to different scales For example,  Parametrization assumptions s + s = κ u + d ( ) § Sum rules to constrains the fit or symmetric  Quark number, momentum, g A , SU(3) flavor symmetry… sea in helicity § Assumptions imposed where theory and exp’t are lacking  Charge symmetry, (anti- )strange, “sea” (antiquark) distribution… Huey-Wen Lin — Los Alamos National Lab 9

  10. Global Momentum Analysis Jimenez enez-Delgad Delgado, , § Many groups have tackled the analysis Melnitc lnitchouk, ,  CTEQ, MSTW, ABM, JR, NNPDF, etc. Owens ns, J.Phys hys. . G40 (2013 13) ) 09310 10 Huey-Wen Lin — Los Alamos National Lab 10

  11. Global Momentum Analysis Jimenez enez-Delgad Delgado, , § Many groups have tackled the analysis Melnitc lnitchouk, ,  CTEQ, MSTW, ABM, JR, NNPDF, etc. Owens ns, J.Phys hys. . G40 (2013 13) ) 09310 10 Huey-Wen Lin — Los Alamos National Lab 11

  12. Global Helicity Analysis § Many groups have tackled the analysis  DSSV, ACC, BB, LSS, JAM, etc. JAM13 ACC09 DSSV09 BB10 LSS10 JAM, , 1310.3 10.3734 734 [hep ep-ph ph] Huey-Wen Lin — Los Alamos National Lab 12

  13. Transversity § There have only been 2 attempts (still very preliminary)  Requires more theory input and experimental data  More assumptions are made to extract the distribution A. Bacchetta chetta, , A. Courtoy rtoy, , and d M. Radic dici, , Phys. s.Rev ev.L .Let ett. . 107, , 012001 01 (2011 11) M. Anselm M. elmino ino, , et al., ., Nucl.P l.Phys. s.Proc. c.Suppl ppl. . 191, 1, 98 – 10 107 7 (2009) Huey-Wen Lin — Los Alamos National Lab 13

  14. PDFs on the Lattice § Lattice QCD is an ideal theoretical tool for investigating strong-coupling regime of quantum field theories  Ideal tool for studying nonperturbative hadron structure § Physical observables are calculated from the path integral § Lattice QCD quark field  Impose a UV cutoff discretize spacetime  Impose an Infrared cutoff L gluon field finite volume x , y , z  Wick rotate to Euclidean  Use compact gauge group t a Huey-Wen Lin — Los Alamos National Lab 14

  15. PDFs on the Lattice § Many lattice calculations of the moments of the PDFs  Limited to the lowest few moments  Might provide constraints on models or tests of experiment § Also applies to GPDs: limited to 3 rd moment § Most progress made in quark contributions  Very costly to obtain useful gluon signal  Limited by available computational resources Huey-Wen Lin — Los Alamos National Lab 15

  16.  x n  Moments § Leading moment  x  , hypercubic decomposition  4 1  4 1 = 1 1  3 1  6 1  6 3 : O 44 − ( O 11 + O 22 + O 33 )/3 O 14 + O 41 , (requires p ≠ 0)  Both operators go to same continuum limit § No mixing with operators of same or lower dimension § To improve to O ( a )  Consider all irrelevant operators of same symmetry: § Higher moments  x 2  ― γ 1 q with coefficient ~ 1/ a 2  4 1 : O 111 mixes with q  4 2 : O {123} requires all momentum components to be nonzero  8 1 : O {441} − ( O {221} + O {331} )/2 mixes under renormalization § For higher spin, all ops mix with lower-dimension ops Huey-Wen Lin — Los Alamos National Lab 16

  17.  x n  Moments § Leading moment  x  , hypercubic decomposition  4 1  4 1 = 1 1  3 1  6 1  6 3 : O 44 − ( O 11 + O 22 + O 33 )/3 O 14 + O 41 , (requires p ≠ 0)  Both operators go to same continuum limit § No mixing with operators of same or lower dimension § To improve to O ( a )  Consider all irrelevant operators of same symmetry: § Higher moments  x 2  ― γ 1 q with coefficient ~ 1/ a 2  4 1 : O 111 mixes with q  4 2 : O {123} requires all momentum components to be nonzero  8 1 : O {441} − ( O {221} + O {331} )/2 mixes under renormalization § For higher spin, all ops mix with lower-dimension ops Huey-Wen Lin — Los Alamos National Lab 17

  18.  x n  Moments § For higher spin, all ops mix with lower-dimension ops  Tricks: subtraction to remove divergent terms, heavy fields, four- point functions… None is practical enough § Relative error grows in higher moments  Calculation would be costly LHPC C (SCRI, CRI, SESAM): AM): 2f, Wilson lson and clove lover Dolgov lgov et al. . PRD66, 6, 034506 6 (2002) ) QCDSF SF: : 0f Göckel eler er et al. . PRD71, 71, 1145 4511 11 (2005)  x 3  q  x 2  q Huey-Wen Lin — Los Alamos National Lab 18

  19. Limited Access § What can we learn about the x -distribution?  Make an ansatz of some smooth form for the distribution and fix the parameters by matching to the lattice moments Cannot separate valence- quark contribution from sea New idea needed to access the sea! W. Detmol old d et al, , Eur.Ph .Phys ys.J.d .J.direct irect C3 (2001) 1) 1 – 15 15 Huey-Wen Lin — Los Alamos National Lab 19

  20. Quark Distribution § Lightcone nucleon quark distribution  Transform lab coordinates to light-cone ones x ± = z ± t Renormalization Gluon potential A + scale µ ― Lightcone coordinate ξ ± =( t ± z )/ √ 2 Nucleon momentum P µ Huey-Wen Lin — Los Alamos National Lab 20

  21. Quark Distribution § Lightcone nucleon quark distribution  Transform lab coordinates to light-cone ones x ± = z ± t Renormalization Gluon potential A + scale µ ― Lightcone coordinate ξ ± =( t ± z )/ √ 2 Nucleon momentum P µ  Massive particles lie on hyperboloids invariant under Lorentz transformation Huey-Wen Lin — Los Alamos National Lab 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend