cross section uncertainties in the nova oscillation
play

Cross Section Uncertainties in the NOvA Oscillation Analyses Aaron - PowerPoint PPT Presentation

Cross Section Uncertainties in the NOvA Oscillation Analyses Aaron Mislivec University of Minnesota 1 The NOvA Experiment NO A Off-axis, long-baseline neutrino oscillation experiment in the NuMI MINER A neutrino beam at Fermilab 2


  1. Cross Section Uncertainties in 
 the NOvA Oscillation Analyses Aaron Mislivec University of Minnesota 1

  2. The NOvA Experiment NO ν A Off-axis, long-baseline neutrino oscillation experiment in the NuMI MINER ν A neutrino beam at Fermilab 2

  3. ν ν μ 𝟑 𝜠𝒏 𝟒𝟑 ν 𝟑 θ δ 𝜠𝒏 𝟒𝟑 𝑁𝑏𝑡𝑡 𝐼𝑗𝑓𝑠𝑏𝑠𝑑ℎ𝑧 ν 𝟑 𝜠𝒏 𝟑𝟐 ν 𝟑 𝜠𝒏 𝟓𝟐 θ θ ν ν μ NOvA Physics Goals ν τ NC Coherent Pion Production Measurement c Long Baseline Neutrino Oscillation Measurements: – ν – • ν μ disappearance 
 Non-Oscillation Measurements: ν e appearance (±30% matter effect) • Cross sections (near detector) - θ 23 , Δ m 232 , δ CP , Mass Hierarchy • Supernova detection • NC disappearance • Exotic phenomena - Sensitive to Sterile Neutrinos - Magnetic monopoles - θ 24 , θ 34 , Δ m 241 - Neutrino magnetic moment 3

  4. NOvA Detectors Functionally identical ND and FD • Same active materials and readout • No A-extrapolation between detectors • ND & FD correlations in cross sections, event selection, and reconstruction 4

  5. NOvA Detectors Sampling Calorimeters (Near and Far) Far Detector PVC Extrusions filled with liquid scintillator - 
 • 14 kton, 344k channels • mineral oil + 5% pseudocumene 810 km from source • Near Detector WLS fiber collects and transports light to APD • 0.3 kton, 20k channels • Optimized for electron ID: Low-Z, 62% active • 1 km from source • 1 rad. length = 38cm (6 cell depths, 10 cell widths) • 5

  6. NOvA Event Topologies p ν μ μ p 1 radiation length = 38cm ν e e (6 cell depths, 10 cell widths) π γ π 0 ν p γ 1m 1m 3 10 2 10 10 q (ADC) 6

  7. Event Selection Learned varia+ons on the JINST 11 P09001 Input Image original image (2016) ν e ν μ ν τ NC Cosmic Events classified with Convolutional Visual Network (CVN) Events treated as images • Successive layers learn topological features • “Feed forward” neural network at end maps to event classes • ν μ analysis identifies μ track using a kNN • Inputs: track length, dE/dx, scattering, fraction of non-track planes 7

  8. Energy Reconstruction NOvA Simulation ν e ν μ ν e FD MC A.U. (Area normalized) Arbitrary units CC ν µ Bkgd. Total − 1 − 0.5 0 0.5 (True - Reco)/True ν μ CC: 
 ν e CC: 
 E ν = E μ + E had E ν = f(E e , E had ) Δ E ν ~ 9% Δ E ν ~ 11% Calorimetric (not kinematic) E ν reconstruction 8

  9. NOvA Neutrino Event Generator ND ν μ CC ND ν μ CC NOvA Preliminary NOvA Preliminary 20 2.85 10 P.O.T. 20 × 2.85 10 P.O.T. × 60000 60000 NOvA ND Data NOvA ND Data First Second MEC QE Analysis Analysis QE 40000 Events Events 40000 RES Non-RES 1 π RES DIS ✕ 0.5 DIS 20000 20000 Other Other 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Visible E (GeV) Visible E (GeV) had had NOvA Simulation 3 10 × 500 GENIE QE (+RPA) GENIE 2.12.2 with the following modifications: Empirical MEC 400 Addition of GENIE Empirical MEC scaled up 20% • Valencia MEC GENIE RES 300 Events Neutrino non-RES 1 π scaled down 50% per • deuterium data 200 CC QE RPA from Valencia & R. Gran 
 • 100 (Phys. Rev. D 88, 113007) 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 True q (GeV) 0 9

  10. Cross Section Uncertainties Utilize GENIE’s standard systematics suite: Primary process ( e.g. , CC QE, RES M A ) • Hadronization • FSI • ND ν μ CC NO A Preliminary ν 6 10 × NO ν A specific uncertainties: 0.14 Simulated Selected Events Simulated Background 5% on CCQE M A per deuterium data • 0.12 Data Shape-only 1- syst. range σ CC QE RPA suppression & enhancement • 20 ND area norm., 8.09 10 POT 0.1 × Data mean: 0.31 GeV MC mean: 0.31 GeV Events (R. Gran, arXiv:1705.02932) 0.08 CC RES RPA f(Q 2 ) off → on (R. Gran) • 0.06 0.04 50% norm. uncertainty on DIS N π for • MEC 0.02 DIS 1.7 < W < 3.0 GeV MEC… 0 0.2 0.4 0.6 0.8 1 • Hadronic Energy Fraction 10

  11. MEC Uncertainties NOvA Simulation 3 Nieves et al. MEC (GENIE) Empirical MEC `Shape' ratio to Empirical MEC Martini et al. MEC (PRC 80, 065501) 2.5 Emp. MEC q QE q → 0 0 Megias et al. MEC (PRD 94, 093004) Arbitrary units Emp. MEC q RES q → 2 Uncertainty envelope 0 0 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 1.2 0 2 4 6 8 True q (GeV) 0 E (GeV) ν E ν shape from model comparisons • MEC q 0 shape → QE, RES q 0 shapes • Initial state np fraction from model comparisons: 
 • València via GENIE vs. SuSA-MEC via PRC94, 054610 np 0 . 7 ≤ np + nn ≤ 0 . 9 11

  12. MEC q 0 NOvA Simulation NOvA Simulation 25000 Near Detector Far Detector True CC MEC only ν Empirical MEC µ 20000 P.O.T. All MEC uncertainties Emp. MEC q QE q → 0 0 15000 20 Arbitrary units Emp. MEC q RES q → 10 0 0 × Events / 9 10000 5000 0 5 0 0.2 0.4 0.6 0.8 1 Ratio 4 True q (GeV) 3 0 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 True q (GeV) True q (GeV) 0 0 The MEC q0 shape is the largest cross section | 4 E | = π 2 L Δ m 2 systematic in the 2017 ν μ disappearance and 
 2 2 θ ν e appearance results: sin migrates events near ν μ oscillation dip • effect on selection efficiency larger for ν e than ν μ • 12

  13. MEC q 0 NOvA Simulation NOvA Simulation NOvA Simulation 25 25000 Far Detector Far Detector True True CC MEC only CC MEC only ν ν Empirical MEC µ µ 20 20000 P.O.T. P.O.T. All MEC uncertainties All MEC uncertainties Emp. MEC q QE q → 0 0 15 15000 20 20 Arbitrary units Emp. MEC q RES q → 10 10 0 0 × × Events / 9 Events / 9 10 10000 5 5000 0 0 5 5 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 Ratio Ratio 4 4 True q True q (GeV) (GeV) 3 3 0 0 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 True q (GeV) True q True q (GeV) (GeV) 0 0 0 The MEC q0 shape is the largest cross section | 4 E | = π 2 L Δ m 2 systematic in the 2017 ν μ disappearance and 
 2 2 θ ν e appearance results: sin migrates events near ν μ oscillation dip • effect on selection efficiency larger for ν e than ν μ • 13

  14. Near-to-Far Extrapolation 1 6 2 3 4 5 1. ND Data E ν Spectrum 4. P( ν x → ν y ) 2. ND Reco. → True E ν 5. FD True → Reco. E ν 3. FD / ND Event Ratio 6. FD Oscillated Prediction in True E ν Bins Systematic shifts affect 2-6 14

  15. Near-to-Far Extrapolation N near ( E reco ) = Φ ( E true ) × � ( E true , A ) × R ( E true ) × ✏ ( ... ) ν ν ν ν N far ( E reco ) = P osc ( E true ) × Φ ( E true ) × � ( E true , A ) × R ( E true ) × ✏ ( ... ) ν ν ν ν ν ND data + extrapolation leverages ND ↔ FD correlations in constraining the FD prediction 15

  16. Test Extrapolation: CC RES M A ν μ CC Selection ν μ CC Selection NOvA Simulation NOvA Simulation 1.2 10 ± σ extrap. ND shift in MaCCRES + σ shift in MaCCRES FD minus ND Residual difference (%) Ratio to nominal MC 1.1 5 FD shift MaCCRES ± σ - shift in MaCCRES FD minus ND σ 1 0 Residual 0.9 5 − 0.8 10 − 0 1 2 3 4 5 0 1 2 3 4 5 Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV) Replace ND data with ND MC under CC RES M A shift • Extrapolate and compare with FD MC under same shift • Shifted ND MC + extrapolation accounts for most of the • shift’s effect in the FD 16

  17. Test Extrapolation: MEC q 0 Shape ν μ CC Selection ν μ CC Selection NOvA Simulation NOvA Simulation 1.3 10 1.2 Residual difference (%) Ratio to nominal MC 5 1.1 1 0 Residual 0.9 5 − + shift in MEC q0 shape FD minus ND σ ± σ extrap. ND shift in MEC q0 shape 0.8 - shift in MEC q0 shape FD minus ND σ FD shift MEC q0 shape ± σ 0.7 10 − 0 1 2 3 4 5 0 1 2 3 4 5 Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV) Replace ND data with ND MC under MEC q 0 Shape shift • Extrapolate and compare with FD MC under same shift • Shifted ND MC + extrapolation accounts for most of the • shift’s effect in the FD 17

  18. Resolution Binning 3 10 × 1 300 0.8 Quantile 4 ν 0.6 200 / E had. Quantile 3 E 0.4 100 Quantile 2 0.2 Quantile 1 0 0 0 1 2 3 4 5 Reconstructed Neutrino Energy (GeV) • 2017 ν μ disappearance analysis extrapolates in bins of E had / E ν • Bins correspond to E ν resolution ( Δ E μ ~ 3%, Δ E had ~ 30%) • High-resolution bin helps resolve oscillation dip • Resolution binning further constrains FD prediction 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend