from dicke sub and superradiance to anderson localisation
play

from Dicke Sub- and Superradiance to Anderson localisation Robin - PowerPoint PPT Presentation

Universit de Nice Sophia Antipolis - CNRS Universit de Nice Sophia Antipolis - CNRS I N L N Institut Non Linaire de Nice Collective effects in light scattering: from Dicke Sub- and Superradiance to Anderson localisation Robin KAISER


  1. Université de Nice Sophia Antipolis - CNRS Université de Nice Sophia Antipolis - CNRS I N L N Institut Non Linéaire de Nice Collective effects in light scattering: from Dicke Sub- and Superradiance to Anderson localisation Robin KAISER INLN, Nice, France Conference on Long-Range-Interacting Many Body Systems: from Atomic to Astrophysical Scales Trieste, Italy July 25 th – 29 th 2016

  2. Université de Nice Sophia Antipolis - CNRS I N L N plasma physics / pattern formation Dicke vs Anderson Nature Photonics 8, 321 (2014) astrophysics (self-oscillations, random lasing, Lévy flight of photons) e N th c n e c s e r o u l f T O M 0 Nature Physics 9, 357 (2013) 0 1 2 3 4 5 6 7 8 9 loading time (s)

  3. N  10 10 T  100µK Long range light-matter interactions : Effects on atomic motion

  4. Université de Nice Sophia Antipolis - CNRS I N L N Mechanical Effects of Multiple Scattering of light Coulomb type force 2 q  eff F  ij 2 I ij  P diff / r ij 4 r 2 0 F ij long range component (C 3 /r 3 , 1/r 2 , 1/r) of resonant dipole-dipole interaction

  5. Université de Nice Sophia Antipolis - CNRS I N L N MOT size : ‘One Component Plasma’ from Phys.Rev. Lett. 64 , 408 (1990) bad for BEC  Multiple scattering to be avoided…

  6. Université de Nice Sophia Antipolis - CNRS I N L N Self Sustained Oscillation of MOT « Cepheid » type instability : Unstable Competition between compression and radiation pressure induced repulsion ce MOT fluorescence N N th complex spatio-temporel evolution ! 0 0 1 2 3 4 5 6 7 8 9 loading time (s) G. Labeyrie, F. Michaud, R. K. T. Pohl, G.Labeyrie, R.K. Phys. Rev. Lett. 96, 023003 (2006) Phys. Rev. A 74, 023409 (2006)

  7. Université de Nice Sophia Antipolis - CNRS I N L N Photon bubbles T. Mendonca, R. K., Phys. Rev. Lett,108,033001 (2012) Photon bubble experiments (in Lisbon and Nice) g 2 (t) g 2 (r)

  8. Université de Nice Sophia Antipolis - CNRS I N L N Looking at the internal degrees of freedom of the atoms

  9. Université de Nice Sophia Antipolis - CNRS I N L N Multiple Scattering of Light in Atomic samples : Disorder vs cooperative effects Dicke Anderson States Localization Multiple Scattering “Local” “Global” Interferences

  10. Université de Nice Sophia Antipolis - CNRS I N L N The case for Anderson : ‘Random walk of photons’

  11. Université de Nice Sophia Antipolis - CNRS I N L N Wave propagation in disordered media : < 1958 : on average : interferences washed out : random walk / diffusion Light : radiation trapping in stars Electrons : metal (Drude model) 1958 : P.W. Anderson : vanishing diffusion for strong disorder ! Solid State Physics : Metal-Insulator Transitions for electrons Light Scattering : Semiconductor powder, White Paint, Atoms Matter Waves : BEC in Disordered Potential, Kicked Rotator Accoustics : Aluminium Beads NMR : Nuclear Spins

  12. Université de Nice Sophia Antipolis - CNRS I N L N Anderson Localization of non interacting waves in 1,2 and 3D Scaling theory of localization : Abrahams et al., PRL 42 , 673 (1979) g : dimensionless conductance  ln g metallic b (g)= 3D  ln L  1 g In 3D : threshold for disorder 2D Ioffe-Regel criterion : k l =1 ln g insulating 1D  1 g metal (g>>1)   L g e  ln g  ln g  ln L No microscopic theory self consistent theory of localization, numerical simulations of toy systems

  13. Université de Nice Sophia Antipolis - CNRS I N L N Anderson Localization of Light in 3D : phase transition  strong scattering required Semi-conductor powder White Paint D.Wiersma et al., Nature 1997 C.Aegerter et al., EPL 2006 F. Scheffold et al., Nat. Photon. 7, 934 (2013) F. Scheffold et al., Nature 398, 206(1999) T Sperling et al., New J. Phys. 18, 013039 (2016) T. v. der Beek et al., PRB 85 115401 (2012) => Not observed so far

  14. Université de Nice Sophia Antipolis - CNRS I N L N Weak Localisation = precursor of strong Localisation? beam Lens splitter CCD MOT N  10 10 Probe laser T  100µK k l  1000 Coherence after resonant scattering with atoms ! See also : M. Havey’s group G. Labeyrie et al., Phys. Rev. Lett., 83 , 5266 (1999)

  15. Université de Nice Sophia Antipolis - CNRS I N L N Theory : • no “exact” solution • diagrammatic approach Excellent agreement (no free parameter) T. Jonckheere et al., Phys. Rev. Lett., 85 , 4269 (2000)

  16. Université de Nice Sophia Antipolis - CNRS I N L N Towards strong localization of light : dense atomic clouds k l  1 Ioffe-Regel : Dynamical Breakdown Dynamical Breakdown k l  1000 10 -0 Strong BEC Localization Weak 10 -2 of Light T [K] Localization k l  3 of Light 10 -4 Dipole Trap 10 -6 (Havey, Browaeys) Strong Localization 10 -8 + BEC BEC 10 -10 k l < 1 10 10 10 12 10 14 10 16 10 18 10 20

  17. Université de Nice Sophia Antipolis - CNRS I N L N Ligth scattering from point dipoles : 1/r outgoing wave

  18. Université de Nice Sophia Antipolis - CNRS I N L N Building up a refractive index « ab inito » (from individual atoms) E sc b j E 0 b m b i :amplitude of dipole i 18

  19. Université de Nice Sophia Antipolis - CNRS I N L N Spherical gaussian cloud : emission diagram Cloud of atoms Far field emission diagram Incoherent model refractive index (particles trajectories, (mean field) scattering in ‘ empty modes’) Mesoscopic physics: Weak localization (waves beyond mean field) 19 S. Bromley et al., Nat. Comm. 7, 11039 (2016)

  20. Université de Nice Sophia Antipolis - CNRS I N L N Theory : Effective Hamiltonian Diagonal : Off diagonal : On site energy transport • Open System • Reminiscent of Anderson Hamiltonian • Heisenberg model with global coupling • Long range hopping • No decoherence (coupling to phonons, …)

  21. Université de Nice Sophia Antipolis - CNRS I N L N Eigenvalues for N coupled dipoles Important near field terms for high densities e ikr ( 1/kr + 1/kr 2 + 1/kr 3 ) e ikr /kr

  22. Université de Nice Sophia Antipolis - CNRS I N L N Resonance Overlap (« Thouless ») Scaling function b (g) NO ANDERSON LOCALISATION FOR S. Skipetrov, I. Sokolov, PRL 112, 023905 (2014) VECTORIAL LIGHT Bellando et al,. Phys. Rev. A 90, 063822 (2014) IN 3D ?

  23. Université de Nice Sophia Antipolis - CNRS I N L N TIME vs SPACE LOCALISATION (2D) Spatially extended mode (vectorial case) Mode width NOT correlated to localisation length : temporal vs spatial localisation Spatially localized mode (scalar case) C. E. Maximo, N. Piovella, Ph. W. Courteille, R. K., R. Bachelard, PRA 92, 062702 (2015)

  24. Université de Nice Sophia Antipolis - CNRS I N L N The quest for Dicke subradiance

  25. Université de Nice Sophia Antipolis - CNRS I N L N 1954 : Dicke super- and subradiant states R. Dicke 1954 First experimental observation of superradiance Feld et al. 1973

  26. Université de Nice Sophia Antipolis - CNRS I N L N Single photon excitation / low intensity limit Superradiant pair Subradiant Subradiant pair N-1 metastable states |ee> G max ~ N G 0 |eg>+ |ge> |eg>- |ge> Extended Volume : b 0 =N at /N modes |gg> Cooperativity without cavity (also Random lasing)

  27. Université de Nice Sophia Antipolis - CNRS I N L N Subradiant pairs : N=2 R. G. DeVoe, R. G. Brewer, PRL 76, 2049 (1996). Forward ‘ subradiance echo ’ from inverted system t nat =7ns l 3 5ns laser pulse ~ 0.5 mm l 4 ~ 20 mm Pencil shape excitation D. Pavolini et al. , Phys. Rev. Lett. 54, 1917 (1985)

  28. Université de Nice Sophia Antipolis - CNRS I N L N Fragile subradiance Single Photon Dicke subradiance for N two level systems (in free space, N>>2) has not been observed • Does not require large spatial densities (near field effect maybe even bad : Gross&Haroche 1982) • Requires large optical densities in all directions (b 0 >>1) • Exploits the 1/r long range dipole-dipole interaction

  29. Université de Nice Sophia Antipolis - CNRS I N L N Time dependent experiments : coherent scattering Superradiance = bright state Subradiance = metastable ‘ dark ’ states W  | E > | D > G D G N L | G > Numerical Simulation of N driven coupled dipoles

  30. Université de Nice Sophia Antipolis - CNRS I N L N Subradiance vs incoherent scattering t sub  b 0 t Rad.Trap.  b( d ) 2 • Random walk of photons • Does not require large spatial densities (without interference) • Requires large optical densities • Diffusion equation t Anderson  exp{b( d )} • Density Threshold ?

  31. Université de Nice Sophia Antipolis - CNRS I N L N Experiment N=10 9 87 Rb T=50 µK R=1 mm r =10 11 /cc b 0 = 20…100 detector

  32. Université de Nice Sophia Antipolis - CNRS I N L N Experimental results Long decay at b( d )<1  Scaling with SYSTEM SIZE ! t (b 0 ) b 0 d Increases as b 0 = r s L 

  33. Université de Nice Sophia Antipolis - CNRS I N L N Single Photon Super- vs Subradiance The ‘super’ of ‘single photon Dicke states’ Subradiant Superradiant

  34. Université de Nice Sophia Antipolis - CNRS I N L N Superradiance in dilute and large cloud of cold atoms Coupled Dipoles (Numerics) Off-axis Superradiance ≠ forward superradiance Experiments M. O. Araujo, I. Kresic, R. K., W. Guerin, to appear in PRL (2016)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend