filtruj c ant ny typical planar antenna
play

Filtrujc antny Typical planar antenna Can be all the functions - PowerPoint PPT Presentation

Filtrujc antny Typical planar antenna Can be all the functions accomplished by a single structure? frequency spatial impedance filter filter matching VERDU, J., PERRUISSEAU-CARRIER, J., COLLADO, C., MATEU, J., HUELTES, A.


  1. Filtrující antény

  2. Typical planar antenna Can be all the functions accomplished by a single  structure? frequency spatial impedance filter filter matching VERDU, J., PERRUISSEAU-CARRIER, J., COLLADO, C., MATEU, J., HUELTES, A. Microstrip patch antenna integration on a band-pass filter topology. In proc. 12th Mediterranean Microwave Symposium (MMS2012) , no. EPFL-CONF-179874. 2012. raida@feec.vutbr.cz 2

  3. Planar filter Impedance discontinuities    forward and backward waves: - Pass-band: constructive interferences - Transmission line: d / dt raida@feec.vutbr.cz 3

  4. Bandpass filter If x =  /2 …  raida@feec.vutbr.cz 4

  5. Patch array, serial feeding       2       A A S D , AF , 1 S     21 11 Currents on patches  radiated waves:  - Main lobe: constructive interferences - Antenna: int( dt ) raida@feec.vutbr.cz 5

  6. Inspiration Last resonator in the filter replaced by  an antenna WU, W. J., YIN, Y. Z., ZUO, S. L., ZHANG, Z. Y., XIE, J. J. A new compact filter-antenna for modern wireless communication systems. IEEE Antennas and Wireless Propagation Letters. vol. 10. DOI: http://dx.doi.org/10.1109/lawp.2011.2171469 raida@feec.vutbr.cz 6

  7. Patch array & apertures raida@feec.vutbr.cz 7

  8. Equivalent circuit raida@feec.vutbr.cz 8

  9. Equivalent circuit Apertures in ground Planar plane antennas Transmission line raida@feec.vutbr.cz 9

  10. Equivalent circuit Apertures in Planar  3 parallel RLC resonators ground plane antennas    j RL   A B 1        2 R RLC j L     C D   0 1   Transmission line  3 J inverters   1    A B 0    jJ     C D   jJ 0     4 segments of           A B cosh l Z sinh l transmission line  c           C D Y sinh l cosh l     c raida@feec.vutbr.cz 10

  11. Equivalent circuit Apertures in Planar ground plane antennas Transmission line    A BY CZ D  S 0 0 11    A BY CZ D 0 0 raida@feec.vutbr.cz 11

  12. Synthesis of filtering array o Patch array  band-pass filter (BPF) o Synthesis of BPF  requested transmission characteristics to be obtained            2       A A S D AF 1 S    21 11 raida@feec.vutbr.cz 12

  13. Synthesis of filtering array o Low-pass prototype: normalized element values g n available to obtain requested characteristics o Band-pass antenna: coefficients re-computed comprising: o Required value of reflection coefficient o Acceptable level of fractional bandwidth raida@feec.vutbr.cz 13

  14. Bandpass filter HONG, J. S., LANCASTER, M. J., Microstrip Filters for RF/Microwave Applications , New York: J. Wiley and Sons, 2001. ISBN: 0-471-38877-7. raida@feec.vutbr.cz 14

  15. Filtering array o An example for 4 antenna elements, |S 11 | < – 10 dB and 0.08 < FBW s < 0.10               2 1 2 1 . 981 1 . 981 4 1 . 770 10 6 . 892 10 FBW  s FBW      1 2 1 . 770 10  g  g 1 0 5           2 2 1 1 g g 1 . 354 10 FBW 1 . 173 10 FBW 3 . 143 10 1 4          2 2 1 g g 3 . 257 10 FBW 1 . 759 FBW 3 . 708 10 2 3   2   A A S D AF 1 S     21 11 raida@feec.vutbr.cz

  16. Transformace pásmová propust                  C L g C 0    serial   S 0   FBW FBW     0 0   FBW 1       C    2 1 FBW S    g    0 C 0 0 fractional bandwidth    g    C C parallel       P   FBW 0 1 2   0 0    FBW bandpass edge    0 L   P frequencies   g   0 C

  17. Design o Known normalized element values g n  values of capacitances C and inductances L in equivalent circuit can be computed o Known C and L  dimensions of planar equivalents can be obtained raida@feec.vutbr.cz 17

  18. Test case 1 f 0 = 4.8 GHz; FBW s = 8 %; S 11 < – 15 dB raida@feec.vutbr.cz 18

  19. Test case 1 f 0 = 4.8 GHz; FBW s = 8 %; S 11 < – 15 dB raida@feec.vutbr.cz 19

  20. Test case 2 f 0 = 5.8 GHz; FBW s = 12 %; S 11 < – 10 dB raida@feec.vutbr.cz 20

  21. Test case 2 f 0 = 5.8 GHz; FBW s = 12 %; S 11 < – 10 dB raida@feec.vutbr.cz 21

  22. Test case 3 f 0 = 6.8 GHz; FBW s = 12 %; S 11 < – 20 dB raida@feec.vutbr.cz 22

  23. Test case 3 f 0 = 6.8 GHz; FBW s = 12 %; S 11 < – 20 dB raida@feec.vutbr.cz 23

  24. Test samples raida@feec.vutbr.cz 24

  25. Test case 1 f 0 = 4.8 GHz; FBW s = 8 %; S 11 < – 15 dB raida@feec.vutbr.cz 25

  26. Test case 1 f 0 = 4.8 GHz; FBW s = 8 %; S 11 < – 15 dB E-plane H-plane

  27. Test case 1 f 0 = 4.8 GHz; FBW s = 8 %; S 11 < – 15 dB raida@feec.vutbr.cz 27

  28. Test case 2 f 0 = 5.8 GHz; FBW s = 12 %; S 11 < – 10 dB raida@feec.vutbr.cz 28

  29. Test case 2 f 0 = 5.8 GHz; FBW s = 12 %; S 11 < – 10 dB E-plane H-plane

  30. Test case 2 f 0 = 5.8 GHz; FBW s = 12 %; S 11 < – 10 dB raida@feec.vutbr.cz 30

  31. Test case 3 f 0 = 6.8 GHz; FBW s = 12 %; S 11 < – 20 dB raida@feec.vutbr.cz 31

  32. Test case 3 f 0 = 6.8 GHz; FBW s = 12 %; S 11 < – 20 dB E-plane H-plane

  33. Test case 3 f 0 = 6.8 GHz; FBW s = 12 %; S 11 < – 20 dB raida@feec.vutbr.cz 33

  34. Other filtenna concepts  Low-pass filter enforced to radiate: 1. Fractal DGS antenna  Multi-objective synthesis in frequency and space: 2. Dipole array 3. SIW-fed patch array raida@feec.vutbr.cz 34

  35. Fractal DGS  Filter parameters - Bandwidth (-3 dB): 5.7 % - S 21 in pass band: ≈ -4.4 dB - S 21 in stop band: ≈ -40.0 dB - S 11 in pass band: ≈ -15.0 dB  Antenna parameters - Realized gain in pass band: ≈ 9.0 dB - Bandwidth (-10 dB): 1.7 % - Max. main lobe deflection (pass band): ≈ 5.0° raida@feec.vutbr.cz 35

  36. Fractal DGS raida@feec.vutbr.cz 36

  37. Dipole array  Frequency filtering 4NEC - Impedance match: ̵ 10 dB (pass) - Gain response: 13.0 dBi (pass), 5.0 dBi (stop)  Spatial filtering - Sidelobe level: 6 dBi (pass), 2 dBi (stop) - Main lobe deflection:  5.0 ° raida@feec.vutbr.cz 37

  38. Dipole array  4NEC: Pareto front of optimal solutions  Tuning space-mapping: CPU-expensive CST model 38

  39. Dipole array 39

  40. Dipole array 40

  41. Dipole array 41

  42. SIW array raida@feec.vutbr.cz 42

  43. SIW array 43

  44. SIW array raida@feec.vutbr.cz 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend