inc 212 signals and systems
play

INC 212 Signals and systems Lecture#5: Frequency response (cont.) - PowerPoint PPT Presentation

INC 212 Signals and systems Lecture#5: Frequency response (cont.) Assoc. Prof. Benjamas Panomruttanarug benjamas.pan@kmutt.ac.th Fr Frequency equency re response of of an an LT LTI sy system We can find y(t) from the frequency response of the


  1. INC 212 Signals and systems Lecture#5: Frequency response (cont.) Assoc. Prof. Benjamas Panomruttanarug benjamas.pan@kmutt.ac.th

  2. Fr Frequency equency re response of of an an LT LTI sy system We can find y(t) from the frequency response of the system.           ( ) cos( ) ( ) cos( ) x t M t y t M M t LTI System i i i i s i i s y ( t ) x ( t )         ( ) ( ) j H j h e d        ( ) i H j M e M s s s s amplitude of output = amplitude of input*magnitude response phase of output = phase of input+phase response 2 BP INC212

  3. 8.3 Ideal Low‐Pass Filters 8.3  The frequency response of a filter is characterized by a passband and a stopband, which are separated by a transition band. (   (  ) ) H j H j   c       c c c 3 BP INC212

  4. Practical low ‐ pass filter: the passband, transition band, and stopband are shown for positive frequencies. (  ) H j 1 2   c Cut ‐ off frequency 4 BP INC212

  5. Practical low ‐ pass filter: more general form (  ) H j Maximum passband attenuation or ripple in passband   1 Maximum stopband magnitude or stopband attenuation     p s Passband edge frequency Stopband edge frequency 5 BP INC212

  6. Linear phase lowpass filter 1 / RC   ( ) H j   1 / RC j Cutoff frequency =  c = 1/( RC )       j  arg H j  H  2  4    4    2 6 BP INC212

  7. Linear phase lowpass filter 1 / RC   ( ) H j   1 / RC j  K    Cutoff frequency =  c = 1/( RC ) 1 10 For R C F       j  arg H j  H  1    100 / rad s 2    3 6 c 10 10 10  4  16 f c Hz  Any input with frequency   4  lower than 100 rad/s  can pass through the filter  2 7 BP INC212

  8. Matlab code clear;clc; close all R = 1e3; C = 10e-6; for i = 0:100 H(i+1) = (1/(R*C))/(1/(R*C)+j*(2*pi*i)); M(i+1) = abs(H(i+1)); P(i+1) = angle(H(i+1)); end figure; subplot 211; plot((0:100),M); xlabel('Frequency (Hz)'); ylabel('Magnitude'); subplot 212; plot((0:100),P); xlabel('Frequency (Hz)'); ylabel('Phase'); 8 BP INC212

  9. Example  K    1 10 Calculate the output y(t), giving that R C F      ( ) 5 * 0 . 95 cos( 10 0 . 3 ) ( ) 5 cos( 10 ) y t t 1. x t t    ( ) 0 . 174 sin( 90 1 . 396 )   ( ) sin( 90 ) y t t 2. x t t     ( ) 5 cos( 10 ) sin( 90 ) 3. x t t t       ( ) 5 * 0 . 95 cos( 10 0 . 3 ) 0 . 174 sin( 90 1 . 396 ) y t t t 9 BP INC212

  10. Matlab code • t = 0:0.001:1; • x = 5*cos(2*pi*5*t); 5 • y = 5*0.95*cos(2*pi*5*t ‐ 0.3); 0 • figure; subplot 311; plot(t,x,'b',t,y,'r ‐‐ '); -5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 • x = sin(90*pi*t); 0.5 • y = 0.174*sin(90*pi*t ‐ 1.396); 0 -0.5 • subplot 312; plot(t,x,'b',t,y,'r ‐‐ '); -1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10 5 • x = 5*cos(2*pi*5*t)+sin(90*pi*t); 0 • y = 5*0.95*cos(2*pi*5*t ‐ -5 0.3)+0.174*sin(90*pi*t ‐ 1.396); -10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 • subplot 313; plot(t,x,'b',t,y,'r ‐‐ '); 10 BP INC212

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend