few body resonances from finite volume calculations
play

Few-body resonances from finite-volume calculations Sebastian K - PowerPoint PPT Presentation

Few-body resonances from finite-volume calculations Sebastian K onig FRIB TA Workshop Connecting bound state calculations with scattering and reactions NSCL, Michigan State University June 19, 2018 P. Klos, SK, J. Lynn, H.-W. Hammer,


  1. Few-body resonances from finite-volume calculations Sebastian K¨ onig FRIB TA Workshop “Connecting bound state calculations with scattering and reactions” NSCL, Michigan State University June 19, 2018 P. Klos, SK, J. Lynn, H.-W. Hammer, and A. Schwenk, arXiv:1805.02029 [nucl-th] Few-body resonances from finite-volume calculations – p. 1

  2. Motivation terra incognita at the doorstep. . . ? ? ? bound dineutron state not excluded by pionless EFT Hammer + SK, PLB 736 208 (2014) recent indications for a three-neutron resonance state. . . Gandolfi et al. , PRL 118 232501 (2017) . . . although excluded by previous theoretical work Offermann + Gl¨ ockle, NPA 318 , 138 (1979); Lazauskas + Carbonell, PRC 71 044004 (2005) possible evidence for tetraneutron resonance Kisamori et al. , PRL 116 052501 (2016) Few-body resonances from finite-volume calculations – p. 2

  3. 4 Γ (MeV) 3 2 1 0 0 2 4 6 8 E R (MeV) Short (recent) history of tetraneutron states 1 2002: experimental claim of bound tetraneutron Marques et al. , PRC 65 044006 2 2003: several studies indicate unbound four-neutron system Bertulani et al. . JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501 3 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003 Few-body resonances from finite-volume calculations – p. 3

  4. Short (recent) history of tetraneutron states 1 2002: experimental claim of bound tetraneutron Marques et al. , PRC 65 044006 2 2003: several studies indicate unbound four-neutron system Bertulani et al. . JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501 3 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003 4 2016: RIKEN experiment: possible tetraneutron resonance E R = (0 . 83 ± 0 . 65 stat. ± 1 . 25 syst. ) MeV , Γ � 2 . 6 MeV Kisamori et al. , PRL 116 052501 following this: several new theoretical investigations 5 complex scaling → need unphys. T = 3 / 2 3N force or strong rescaling Hiyama et al. , PRC 93 044004 (2016),; Deltuva, PLB 782 238 (2018) 4 incompatible predictions: 3 Γ (MeV) Fossez et al. , PRL 119 032501 (2017) 2 Shirokov et al. PRL 117 182502(2016) 1 Gandolfi et al. , PRL 118 232501 (2017) 0 0 2 4 6 8 E R (MeV) Few-body resonances from finite-volume calculations – p. 3

  5. Short (recent) history of tetraneutron states 1 2002: experimental claim of bound tetraneutron Marques et al. , PRC 65 044006 2 2003: several studies indicate unbound four-neutron system Bertulani et al. . JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501 3 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003 4 2016: RIKEN experiment: possible tetraneutron resonance E R = (0 . 83 ± 0 . 65 stat. ± 1 . 25 syst. ) MeV , Γ � 2 . 6 MeV Kisamori et al. , PRL 116 052501 following this: several new theoretical investigations 5 complex scaling → need unphys. T = 3 / 2 3N force or strong rescaling Hiyama et al. , PRC 93 044004 (2016),; Deltuva, PLB 782 238 (2018) 4 incompatible predictions: 3 Γ (MeV) Fossez et al. , PRL 119 032501 (2017) 2 Shirokov et al. PRL 117 182502(2016) 3 . 0 4 neutrons 2 . 0 1 3 neutrons 1 . 0 Gandolfi et al. , PRL 118 232501 (2017) 0 . 0 0 0 2 4 6 8 − 1 . 0 E (MeV) R WS = 4 . 5 fm E R (MeV) − 2 . 0 2 . 0 − 3 . 0 4 neutrons LO indications for three-neutron resonance. . . 0 . 0 NLO − 4 . 0 N 2 LO − 2 . 0 R WS = 6 . 0 fm . . . lower in energy than tetraneutron state − 5 . 0 − 4 . 0 R WS = 6 . 0 fm R WS = 7 . 5 fm − 6 . 0 − 6 . 0 − 3 . 0 − 2 . 0 − 1 . 0 Gandolfi et al. , PRL 118 232501 (2017) − 7 . 0 − 4 . 0 − 3 . 5 − 3 . 0 − 2 . 5 − 2 . 0 − 1 . 5 − 1 . 0 − 0 . 5 0 . 0 V 0 (MeV) Few-body resonances from finite-volume calculations – p. 3

  6. How to tackle resonances? V ( r ) Resonances 2.0 1.5 metastable states 1.0 decay width ↔ lifetime 0.5 5 r 1 2 3 4 1 Look for jump by π in scattering phase shift: � simple � possibly ambiguous (background), need 2-cluster system δ ( E } 150 100 50 3.0E 0.5 1.0 1.5 2.0 2.5 Few-body resonances from finite-volume calculations – p. 4

  7. How to tackle resonances? V ( r ) Resonances 2.0 1.5 metastable states 1.0 decay width ↔ lifetime 0.5 5 r 1 2 3 4 1 Look for jump by π in scattering phase shift: � simple � possibly ambiguous (background), need 2-cluster system δ ( E } 150 100 ↔ 50 3.0E 0.5 1.0 1.5 2.0 2.5 2 Find complex poles in S-matrix: e.g., Gl¨ ockle, PRC 18 564 (1978); Borasoy et al. , PRC 74 055201 (2006); . . . � direct, clear signature � technically challenging, needs analytic pot. Few-body resonances from finite-volume calculations – p. 4

  8. How to tackle resonances? V ( r ) Resonances 2.0 1.5 metastable states 1.0 decay width ↔ lifetime 0.5 5 r 1 2 3 4 1 Look for jump by π in scattering phase shift: � simple � possibly ambiguous (background), need 2-cluster system δ ( E } 150 100 ↔ 50 3.0E 0.5 1.0 1.5 2.0 2.5 2 Find complex poles in S-matrix: e.g., Gl¨ ockle, PRC 18 564 (1978); Borasoy et al. , PRC 74 055201 (2006); . . . � direct, clear signature � technically challenging, needs analytic pot. 3 Put system into periodic box! Few-body resonances from finite-volume calculations – p. 4

  9. Finite periodic boxes physical system enclosed in finite volume (box) typically used: periodic boundary conditions � volume-dependent energies Few-body resonances from finite-volume calculations – p. 5

  10. Finite periodic boxes physical system enclosed in finite volume (box) typically used: periodic boundary conditions � volume-dependent energies L¨ uscher formalism Physical properties encoded in the L -dependent energy levels! infinite-volume S-matrix governs discrete finite-volume spectrum PBC natural for lattice calculations. . . . . . but can also be implemented with other methods Few-body resonances from finite-volume calculations – p. 5

  11. General bound-state volume dependence volume dependence ↔ overlap of asymptotic wave functions L¨ uscher, Commun. Math. Phys. 104 177 (1986); . . . � κ A | N − A = 2 µ A | N − A ( B N − B A − B N − A ) Volume dependence of N -body bound state ∆ B N ( L ) ∝ ( κ A | N − A L ) 1 − d/ 2 K d/ 2 − 1 ( κ A | N − A L ) � � /L ( d − 1) / 2 as L → ∞ ∼ exp − κ A | N − A L ( L = box size, d no. of spatial dimensions, K n = Bessel function) SK and D. Lee, PLB 779 , 9 (2018) channel with smallest κ A | N − A determines asymptotic behavior Few-body resonances from finite-volume calculations – p. 6

  12. Numerical results SK and D. Lee, PLB 779 , 9 (2018) 2.5 0 D = 1, a latt = 1/3, k = 2 D = 3, a latt = 1/2, k = 2 0 −5 N = 2 log(L ΔB) −2.5 N = 3 −10 N = 2 log(ΔB) N = 4 N = 3 −5 −15 N = 5 −7.5 −20 −10 −25 −30 −12.5 5 10 15 20 25 0 10 20 30 40 50 L L → straight lines ↔ excellent agreement with prediction ֒ N B N L min . . . L max κ fit κ 1 | N − 1 d = 1 , V 0 = − 1 . 0 , R = 1 . 0 2 0.356 20 . . . 48 0 . 59536(3) 0.59625 3 1.275 15 . . . 32 1 . 1062(14) 1.1070 4 2.859 12 . . . 24 1 . 539(3) 1.541 5 5.163 12 . . . 20 1 . 916(21) 1.920 d = 3 , V 0 = − 5 . 0 , R = 1 . 0 2 0.449 15 . . . 24 0 . 6694(2) 0.6700 3 2.916 4 . . . 14 1 . 798(3) 1.814 Few-body resonances from finite-volume calculations – p. 7

  13. Finite-volume resonance signatures L¨ uscher formalism: phase shift ↔ box energy levels � Lp � 2 p cot δ 0 ( p ) = 1 � E ( L ) � πLS ( η ) , η = , p = p 2 π L¨ uscher, Nucl. Phys. B 354 531 (1991); . . . resonance contribution � avoided level crossing Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); . . . Few-body resonances from finite-volume calculations – p. 8

  14. Finite-volume resonance signatures L¨ uscher formalism: phase shift ↔ box energy levels � Lp � 2 p cot δ 0 ( p ) = 1 � E ( L ) � πLS ( η ) , η = , p = p 2 π L¨ uscher, Nucl. Phys. B 354 531 (1991); . . . resonance contribution � avoided level crossing Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); . . . p 12 no interaction , δ ( p ) = 0 10 ֒ → free levels ∼ 1 /L 8 6 4 2 10 L 2 4 6 8 Few-body resonances from finite-volume calculations – p. 8

  15. Finite-volume resonance signatures L¨ uscher formalism: phase shift ↔ box energy levels � Lp � 2 p cot δ 0 ( p ) = 1 � E ( L ) � πLS ( η ) , η = , p = p 2 π L¨ uscher, Nucl. Phys. B 354 531 (1991); . . . resonance contribution � avoided level crossing Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); . . . p δ ( p } 12 p 1 2 3 4 5 6 10 - 0.1 - 0.2 8 - 0.3 6 - 0.4 4 2 10 L 2 4 6 8 Few-body resonances from finite-volume calculations – p. 8

  16. Finite-volume resonance signatures L¨ uscher formalism: phase shift ↔ box energy levels � Lp � 2 p cot δ 0 ( p ) = 1 � E ( L ) � πLS ( η ) , η = , p = p 2 π L¨ uscher, Nucl. Phys. B 354 531 (1991); . . . resonance contribution � avoided level crossing Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); . . . p δ ( p } 12 2.5 10 2.0 1.5 8 1.0 6 0.5 p 4 1 2 3 4 5 6 2 10 L 2 4 6 8 Few-body resonances from finite-volume calculations – p. 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend