few body physics with relation to neutrinos
play

Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS - PowerPoint PPT Presentation

Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS Summer School Jefferson Lab - Newport News VA, June 2018 bla Thanks to the Organizers 1 / 31 Neutrinos (Fundamental Symmetries) and Nuclei Topics (5 hours) * Nuclear Theory for


  1. Sensitivity to ‘pion-exchange-like’ correlations GT-AA with correlations -3 2 � 10 10 He 10 Be 0.4 GT-AA without correlations -3 2 � 10 0.3 1 � 10 -3 C(q) [MeV -1 ] 0.2 C(r) [fm 8 � 10 -4 0.1 -1 ] -4 4 � 10 0 0 -4 � 10 -4 -0.1 0 2 4 6 0 200 400 600 r [fm] q [MeV] * no ‘pion-exchange-like’ correlation operators U ij * yes ‘pion-exchange-like’ correlation operators U ij * ∼ 10% increase in the matrix elements corresponds with Mereghetti & Dekens & Cirigliano & Carlson & Wiringa PRC97(2018)014606 19 / 31

  2. Single Beta Decay Matrix Elements in A = 6–10 10 C 10 B 7 Be 7 Li(ex) 7 Be 7 Li(gs) 6 He 6 Li 3 H 3 He Ratio to EXPT gfmc 1b gfmc 1b+2b(N4LO) Chou et al. 1993 - Shell Model - 1b 1 1.1 1.2 gfmc (1b) and gfmc (1b+2b); shell model (1b) Pastore et al. PRC97(2018)022501 A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003 Based on g A ∼ 1 . 27 no quenching factor ∗ data from TUNL, Suzuki et al. PRC67(2003)044302, Chou et al. PRC47(1993)163 20 / 31

  3. Comparison with calculations of larger nuclei J. Menendez arXiv:1712.08691 21 / 31

  4. Comparison with calculations of larger nuclei - 1/4 F NN GT ππ GT π N F ν F NN GT AA GT ν GT ππ GT π N 1 1 Norm Norm A=10 A=10 A=12 A=12 A=48 JM A=48 JM A=76 JM A=76 JM A=76 JH A=76 JH A=136 JM A=136 JM A=136 JH A=136 JH 0 0 -1 -1 JM = Javier Menendez private communication JH = Hyv¨ arien et al. PRC91(2015)024613 * Relative size of the matrix elements is approximately the same in all nuclei * Short-range terms approximately the same in all nuclei with Mereghetti & Dekens & Cirigliano & Carlson & Wiringa PRC97(2018)014606 22 / 31

  5. Neutrinoless Double Beta Decay: Summary and Outlook We studied correlations and many-body currents in single beta and neutrinoless double beta decays (NLDBD) in A ≤ 12 nuclei * In single beta decays the calculations based on g A ∼ 1 . 27 are in good agreement with the data and axial two-body currents provide a negligible contribution ∼ 2% * In the neutrino-scattering Quasi Elastic kinematic region electroweak two-body are found to increase calculations based on one-body operators alone * In NLDBD we tested the neutrino-exchange potentials as well as contributions of one-pion and contact- range * Lack of correlations in the wave functions produces a ∼ 10% increase in the NLDBD matrix elements 23 / 31

  6. Summary and Outlook Two-nucleon correlations and two-body electroweak currents are crucial to explain available experimental data of both static (ground state properties) and dynamical (cross sections and rates) nuclear observables * Two-body currents can give ∼ 30 − 40% contributions and improve on theory/EXPT agreement * Calculations of β − and ββ − decay m.e.’s in A ≤ 12 indicate two-body physics (currents and correlations) is required * Short-Time-Approximation to evaluate υ -A scattering in A > 12 nuclei is in excellent agreement with exact calculations and data * We are developing a coherent picture for neutrino-nucleus interactions * 24 / 31

  7. Factorization: Short-Time Approximation � 0 | O † R α ( q , ω ) = ∑ � � δ ω + E 0 − E f α ( q ) | f �� f | O α ( q ) | 0 � f � α ( q ) e i ( H − ω ) t O α ( q ) | 0 � dt � 0 | O † R α ( q , ω ) = At short time, expand P ( t ) = e i ( H − ω ) t and keep up to 2b-terms H ∼ ∑ t i + ∑ υ ij i < j i and O † i P ( t ) O i + O † i P ( t ) O j + O † i P ( t ) O ij + O † ij P ( t ) O ij 1b 2b ℓ ′ ℓ ′ q q ℓ ℓ WITH Carlson & Gandolfi (LANL) & Schiavilla (ODU+JLab) & Wiringa (ANL) 25 / 31

  8. Factorization up to two-body operators: The Short-Time Approximation (STA) ℓ ′ In STA: ∼ | f > q Response functions are given by the scattering off pairs of fully interacting nucleons that propagate into a ℓ correlated pair of nucleons = ∑ � 0 | O † � � R α ( q , ω ) δ ω + E 0 − E f α ( q ) | f �� f | O α ( q ) | 0 � f ( 1 ) ( q )+ O α ( 2 ) ( q ) = 1b + 2b O α ( q ) = O α | f � ∼ | ψ p , P , J , M , L , S , T , M T ( r , R ) � = correlated two − nucleon w . f . * We retain two-body physics consistently in the nuclear interactions and electroweak currents * STA can be implemented to accommodate for more two-body physics, e.g. , pion-production induced by e and ν � p 2 P 2 � 0 | O † � � R α ( q , ω ) ∼ δ ( ω + E 0 − E f ) d Ω P d Ω p dPdp α ( q ) | p , P �� p , P | O α ( q ) | 0 � 26 / 31

  9. The Short-Time Approximation S(e,E) 2500 2000 1500 1000 500 0 -500 0 50 0 50 100 100 150 150 e (p) MeV 200 200 E (P) MeV 250 250 300 300 Transverse “response-density” 1b + 2b for 4 He � p 2 P 2 � 0 | O † R α ( q , ω ) ∼ δ ( ω + E 0 − E f ) d Ω P d Ω p dPdp � α ( q ) | p , P �� p , P | O α ( q ) | 0 � � * Preliminary results * 27 / 31

  10. ✌ ✔ ✟ ☞ ☛ ✡ ✠ ✟ ✕ ✓ ✎ ✒ ✑ ✏ ✎ ✍ ✌ ☞ ☛ ✍ ✏ ✠ ✌ ✕ ✔ ✓ ✒ ✑ ✏ ✎ ✍ ☞ ✑ ☛ ✡ ✠ ✟ ✕ ✔ ✓ ✒ ✡ EM Moments, EM Decays and e -scattering off nuclei 9 Be( 5 / 2 - � 3 / 2 - ) B(E2) � ✁ � ✞ ✖✗ ✘✙ ✚ ✛ ✜ ✢✣ ✤✥ ✦ ✧ ★ ✩ ✪ ★ - � � ✁ � ✝ ✫ ✬ ✭ ✮ 9 Be( 5 / 2 3 / 2 - ) B(M1) ✯ ✰ ✱ ✲ ✳ ✳ ✴ ✵ ✴ ✶✷ ✸ ✹ ✷ ✺ ✻✷ ✼ ✷ ✄ ☎ ✄ ✆ 4 8 B(3 + � 2 + ) B(M1) � ✁ � ✂ 3 8 B(1 + � 2 + ) B(M1) 9 B 7 Li p � ✁ � � 9 Li 3 H 2 8 Li(3 + � 2 + ) B(M1) � ✁ � ✞ 6 Li* 10 B � ✁ � ✝ 8 Li(1 + � 1 2 + ) B(M1) µ ( µ N ) 8 Li 8 B 2 H 6 Li ✄ ☎ ✄ ✆ 10 B* 7 Be( 1 / 2 - � 3 / 2 - ) B(M1) 0 GFMC(1b) 9 C � ✁ � ✂ GFMC(1b+2b) 9 Be 7 Be 7 Li( 1 / 2 - � 3 / 2 - ) B(E2) EXPT -1 � ✁ � � 3 He n � ✁ � ✞ 7 Li( 1 / 2 - � 3 / 2 - ) B(M1) -2 � ✁ � ✝ 6 Li(0 + � 1 + ) B(M1) -3 ✄ ☎ ✄ ✆ EXPT GFMC(1b) GFMC(1b+2b) � ✁ � ✂ 0 1 2 3 � ✁ � � Ratio to experiment ✽ ✾ ✿ ❀ ❁ ❁ ❀ ❂ ❁ ❃ ❁ ❁ ❃ ❂ ❁ ❄ ❁ ❁ ❄ ❂ ❁ ❅ ❆ ❆ ❇ ❈ ❉❊ ❋ ● Electromagnetic data are explained when two-body correlations and currents are accounted for! Pastore et al. PRC87(2013)035503 - Lovato et al. PRC91(2015)062501 28 / 31

  11. Towards a coherent and unified picture of neutrino-nucleus interactions * ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays * ω � tens MeV: Nuclear Rates for Astrophysics * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 29 / 31

  12. Understand Nuclei to Understand the Cosmos ESA, XMM-Newton, Gastaldello, CFHTL Majorana Demonstrator LBNF 30 / 31

  13. Thank you! saori.pastore at gmail.com 31 / 31

  14. Nuclear Physics for Neutrinoless Double Beta Decay: Kinematics ⇒ ω ∼ few MeV, q ∼ 0: EM decay, β -decay, ββ -decays ⇐ ⇒ ω ∼ few MeV, q ∼ hundreds of MeVs: 0 νββ -decays ⇐ * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 32 / 31

  15. Nuclei for Accelerator Neutrinos’ Experiments LBNF T2K 12 C CCQE on Neutrino-Nucleus scattering 8 7 ℓ ′ 6 q 5 2 ] -38 cm Ankowski, SF ℓ 4 Athar, LFG+RPA σ [x 10 Benhar, SF GiBUU 3 Madrid, RMF Martini, LFG+RPA Nieves, LFG+SF+RPA 2 � ∆ m 2 RFG, M A =1 GeV � 21 L RFG, M A =1.35 GeV P ( ν µ → ν e ) = sin 2 2 θ sin 2 1 Martini, LFG+2p2h+RPA 2 E ν 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] Alvarez-Ruso arXiv:1012.3871 * Nuclei of 12 C , 40 Ar , 16 O , 56 Fe , ... * are the DUNE, MiniBoone, T2K, Miner ν a ... detectors’ active material 33 / 31

  16. Nuclear Physics for Neutrinoless Double Beta Decay Searches ✦ ✦ ✦ ✦ ✦ ✦ ✦ Majorana Demonstrator J. Engel and J. Men´ endez - arXiv:1610.06548 0 νββ -decay τ 1 / 2 � 10 25 years (age of the universe 1 . 4 × 10 10 years) need 1 ton of material to see (if any) ∼ 5 decays per year * Decay Rate ∝ (nuclear matrix elements) 2 ×� m ββ � 2 * 2015 Long Range Plane for Nuclear Physics 34 / 31

  17. Nuclear Structure and Dynamics * ω ∼ few MeV, q ∼ 0: EM decay, β -decay, ββ -decays * ω � tens MeV: Nuclear Rates for Astrophysics * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 35 / 31

  18. The Microscopic (or ab initio ) Description of Nuclei ℓ ′ q ℓ Develop a comprehensive theory that describes quantitatively and predictably all nuclear structure and reactions * Accurate understanding of interactions between nucleons, p ’s and n ’s * and between e ’s, ν ’s, DM , ... , with nucleons, nucleons-pairs, ... H Ψ = E Ψ Ψ ( r 1 , r 2 , ..., r A , s 1 , s 2 , ..., s A , t 1 , t 2 , ..., t A ) Erwin Schr¨ odinger 36 / 31

  19. Nuclear Force These Days * 1930s Yukawa Potential * 1960–1990 Highly sophisticated meson exchange potentials * 1990s– Highly sophisticated Chiral Effective Field Theory based potentials π π π Hideki Yukawa Steven Weinberg * Contact terms: short-range 1 * One-pion-exchange: range ∼ m π 1 * Two-pion-exchange: range ∼ 2 m π 37 / 31

  20. Nuclear Interactions and the role of the ∆ Courtesy of Maria Piarulli * N3LO with ∆ nucleon-nucleon interaction constructed by Piarulli et al. in PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 with ∆ ′ s fits ∼ 2000 ( ∼ 3000) data up 125 (200) MeV with χ 2 /datum ∼ 1; * N2LO with ∆ 3-nucleon force fits 3 H binding energy and the nd scattering length υ 12 = ∑ υ p O 12 = [ 1 , σ 1 · σ 2 , S 12 , L · S , L 2 , L 2 σ 1 · σ 2 , ( L · S ) 2 ] ⊗ [ 1 , τ 1 · τ 2 ] 12 ( r ) O 12 ; p + operators 4 terms breaking charge independence 38 / 31

  21. Phenomenological aka Conventional aka Traditional aka Realistic Two- and Three- Nucleon Potentials Courtesy of Bob Wiringa * AV18 fitted up to 350 MeV, reproduces phase shifts up to ∼ 1 GeV * * IL7 fitted to 23 energy levels, predicts hundreds of levels * 39 / 31

  22. Nucleon-nucleon potential Aoki et al. Comput.Sci.Disc.1(2008)015009 CT = Contact Term ∗ - short-range; 1 OPE = One Pion Exchange - range ∼ m π ; 1 TPE = Two Pion Exchange - range ∼ 2 m π ∗ in practice CT’s in r -space are coded with representations of a δ -function ( e.g. , a Gaussian function), or special functions such as Wood-Saxon functions 40 / 31

  23. ρ , ω , σ -exchange The One Boson Exchange (OBE) Lagrangians scalar − g S 0 ¯ − g S 1 ¯ ψψφ S 0 ψτψ · � φ S 1 pseudo-scalar − ig PS 0 ¯ − ig PS 1 ¯ ψγ 5 ψφ PS 0 ψγ 5 τψ · � φ PS 1 vector − g V 0 ¯ ψγ µ ψφ V 0 µ − g V 1 ¯ ψγ µ τψ · � φ V 1 µ tensor − g T 0 − g T 1 ψσ µν ψ∂ ν φ T 0 ψσ µν τψ · ∂ ν � φ T 1 2 m T 0 ¯ 2 m T 1 ¯ µ µ slide from my 15 mins HUGS talk... 41 / 31

  24. CD Bonn Potential g 2 g T J π Mass (MeV) I 4 π g V π ± 0 − 139.56995 1 13.6 PS 1 0 − π 0 134.9764 1 13.6 PS 1 0 − η 547.3 0 0.4 PS 0 ρ ± , ρ 0 1 − 769.9 1 0.84 6.1 V 1; T 1 1 − ω 781.94 0 20.0 0.0 V 0; T 0 0 + σ 400-1200 0 S 0 R.Machleidt, Phys.Rev. C 63 , 014001 (2001) O 12 = [ 1 , σ 1 · σ 2 , S 12 , L · S ] ⊗ [ 1 , τ 1 · τ 2 ] vs O 12 = [ 1 , σ 1 · σ 2 ] ⊗ [ 1 , τ 1 · τ 2 ] ; S 12 from2 π − exchange slide from my 15 mins HUGS... 42 / 31

  25. Nucleon-Nucleon Potential and the Deuteron M = ± 1 M = 0 Carlson and Schiavilla Rev.Mod.Phys.70(1998)743 43 / 31

  26. Quantum Monte Carlo Methods ℓ ′ q ℓ Solve numerically the many-body problem H Ψ = E Ψ Ψ ( r 1 , r 2 , ..., r A , s 1 , s 2 , ..., s A , t 1 , t 2 , ..., t A ) Ψ are spin-isospin vectors in 3 A dimensions with 2 A × A ! Z ! ( A − Z ) ! components 4 He : 96 6 Li : 1280 8 Li : 14336 12 C : 540572 44 / 31

  27. Variational Monte Carlo (VMC) Minimize expectation value of H = T + AV18 + IL7 E V = � Ψ V | H | Ψ V � ≥ E 0 � Ψ V | Ψ V � using trial function � �� � S ∏ ( 1 + U ij + ∑ ∏ | Ψ V � = U ijk ) f c ( r ij ) | Φ A ( JMTT 3 ) � i < j k � = i , j i < j * single-particle Φ A ( JMTT 3 ) is fully antisymmetric and translationally invariant * central pair correlations f c ( r ) keep nucleons at favorable pair separation * pair correlation operators U ij reflect influence of υ ij (AV18) * triple correlation operators U ijk reflect the influence of V ijk (IL7) Lomnitz-Adler, Pandharipande, and Smith NPA361(1981)399 Wiringa, PRC43(1991)1585 45 / 31

  28. Green’s function Monte Carlo (GFMC) Ψ V can be further improved by “filtering” out the remaining excited state contamination Ψ ( τ ) = exp [ − ( H − E 0 ) τ ] Ψ V = ∑ exp [ − ( E n − E 0 ) τ ] a n ψ n n Ψ ( τ → ∞ ) = a 0 ψ 0 In practice, we evaluate a “mixed” estimates � O ( τ ) � = f � Ψ ( τ ) | O | Ψ ( τ ) � i Mixed + � O ( τ ) � f ≈ � O ( τ ) � i Mixed −� O � V � Ψ ( τ ) | Ψ ( τ ) � Mixed = f � Ψ V | O | Ψ ( τ ) � i f � Ψ ( τ ) | O | Ψ V � i ; � O ( τ ) � f � O ( τ ) � i Mixed = f � Ψ V | Ψ ( τ ) � i f � Ψ ( τ ) | Ψ V � i Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC 56 , 1720 (1997) Wiringa, Pieper, Carlson, & Pandharipande, PRC 62 , 014001 (2000) Pieper, Wiringa, & Carlson, PRC 70 , 054325 (2004) 46 / 31

  29. GFMC Energy calculation: An example -20 8 Be(3 + ) 8 Be(1 + ) 8 Be(4 + ) 8 Be(2 + ) -30 8 Be(gs) E( τ ) (MeV) -40 Fig. 6 (Wiringa, et al.) -50 0 0.05 0.1 0.15 0.2 τ (MeV -1 ) Wiringa et al. PRC62(2000)014001 47 / 31

  30. Spectra of Light Nuclei Carlson et al. Rev.Mod.Phys.87(2015)1067 48 / 31

  31. Spectra of Light Nuclei M. Piarulli et al. - arXiv:1707.02883 * one-pion-exchange physics dominates * * it is included in both chiral and “conventional” potentials * 49 / 31

  32. Three-body forces A υ ij + ∑ ∑ t i + ∑ H = T + V = V ijk + ... i = 1 i < j i < j < k V ijk ∼ ( 0 . 2 − 0 . 9 ) υ ij ∼ ( 0 . 15 − 0 . 6 ) H υ π ∼ 0 . 83 υ ij 10 B VMC code output Ti + Vij = -38.2131 (0.1433) + Vijk = -46.7975 (0.1150) Ti = 290.3220 (1.2932) Vij =-328.5351 (1.1983) Vijk = -8.5844 (0.0892) Two-body physics dominates! 50 / 31

  33. (Very) Incomplete List of Credits and Reading Material ∗ Pieper and Wiringa; Ann.Rev.Nucl.Part.Sci.51(2001)53 ∗ Carlson et al. ; Rev.Mod.Phys.87(2015)1067 ∗ van Kolck et al. ; PRL72(1994)1982-PRC53(1996)2086 ∗ Kaiser, Weise et al. ; NPA625(1997)758-NPA637(1998)395 ockle, Meissner ∗ ; RevModPhys81(2009)1773 and references therein ∗ Epelbaum, Gl¨ ∗ Entem and Machleidt ∗ ; PhysRept503(2011)1 and references therin * NN Potentials suited for Quantum Monte Carlo calculations * ∗ Pieper and Wiringa; Ann.Rev.Nucl.Part.Sci.51(2001)53 ∗ Gezerlis et al. and Lynn et al. ; PRL111(2013)032501,PRC90(2014)054323,PRL113(2014)192501 ; ∗ Piarulli et al. ; PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 51 / 31

  34. Summary: Nuclear Interactions * The Microscopic description of Nuclei is very successful * Nuclear two-body forces are constrained by large database of nucleon-nucleon scattering data * Intermediate– and long–range components are described in terms of one- and two-pion exchange potentials * Short-range parts are described by contact terms or special functions * Due to a cancellation between kinetic and two-body contribution, three-body potentials are (small but) necessary to reach (excellent) agreement with the data * Calculated spectra of light nuclei are reproduced within 1 − 2% of expt data * Two-body one-pion-exchange contributions dominate and are crucial to explain the data 52 / 31

  35. Neutrinos (Fundamental Symmetries) and Nuclei Topics (5 hours) * Nuclear Theory for the Neutrino Experimental Program � * Microscopic (or ab initio ) Description of Nuclei � * “Realistic” Models of Two- and Three-Nucleon Interactions � * “Realistic” Models of Many-Body Nuclear Electroweak Currents * Short-range Structure of Nuclei and Nuclear Correlations * Quasi-Elastic Electron and Neutrino Scattering off Nuclei * Validation of the theory against available data 53 / 31

  36. Electromagnetic Probes as tool to test theoretical models e ′ , p ′ µ P µ e f , | Ψ f � θ e γ ∗ Z √ α √ α j µ q µ = p µ e − p ′ µ e = ( ω, q ) P µ e , p µ i , | Ψ i � e * coupling constant α ∼ 1 / 137 allows for a perturbative treatment of the EM interaction; single photon γ exchange suffices * calculated x-sections factorize into a part ∝ |� Ψ f | j µ | Ψ i �| 2 with j µ nuclear EM currents and a part completely specified by the electron kinematic variables * EXPT data are (in most cases) known with great accuracy providing stringent constraints on theories * For light nuclei, the many-body problem can be solved exactly or within controlled approximations 54 / 31

  37. Nuclear Currents: One Body Component 1b A ℓ ′ ∑ ρ = ρ i + ... , i = 1 q A ∑ j = j i + ... ℓ i = 1 * Nuclear currents given by the sum of p ’s and n ’s currents, one-body currents (1b) � L p � S n � S p * Nucleonic electroweak form factors are taken from experimental data, and, in principle, from LQCD calculations where data are poor or scarce ( e.g. , nucleonic axial form factor) * A description based on 1b operators alone fails to reproduce “basic” observables (magnetic moments, np radiative capture) * corrections from two-body meson-exchange currents are required to explain, e.g. , radiative capture Riska&Brown 1972 55 / 31

  38. Electromagnetic Nucleonic Form Factors 1.2 1 1.0 p /( µ p G D ) Price, Hanson Price 0.8 p /G D Berger, Walker 0.9 Berger Borkowski, Murphy Hanson G E Andivahis, Qattan Borkowski 0.6 G M Gayou2002, Punjabi Bosted 0.8 Sill Christy Walker 0.4 Gayou2001 Andivahis Puckett, Crawford Christy 0.7 Zhan, Paolone 0.2 Qattan Ron -1 0 1 -2 -1 0 1 10 10 10 10 10 10 10 Bermuth A-S Bartel-69 Schiavilla 1.1 0.5 Kelly Bartel-72 Zhu Esaulov Becker BHM-SC Lung Herberg BHM-pQCD 0.4 Markowitz Ostrick GKex n /( µ n G D ) Anklin-94 Passchier n /G D 1 Bruins 0.3 Rohe Anklin-98 Eden G E Gao Meyerhoff G M 0.2 Xu-2000 Madey Xu-2003 0.9 Warren Kubon 0.1 Riordan Anderson Geis Lachniet 0 0.8 -2 -1 0 -2 -1 0 10 10 10 10 10 10 2 | (GeV/c) 2 2 | (GeV/c) 2 |Q |Q Gonz´ elez-Jim´ enez Phys.Rept.524(2013)1-35 56 / 31

  39. Nuclear Currents: Two-Body Component 1b 2b A ℓ ′ ℓ ′ ∑ ρ i + ∑ ρ = ρ ij + ... , i < j i = 1 q q A ∑ j i + ∑ = j ij + ... j ℓ ℓ i = 1 i < j * Nuclear currents given by the sum of p ’s and n ’s currents, one-body currents (1b) � L p � S n � S p * Two-body currents (2b) essential to satisfy current conservation * We use MEC (SNPA) or χ EFT currents � � q · j = [ H , ρ ] = t i + υ ij + V ijk , ρ + . . . q − ∂ρ γ ∇ · j = ∂ t classically N N 57 / 31

  40. Electromagnetic Reactions * ω ∼ few MeV, q ∼ 0: EM-decays * ω ∼ 10 2 MeV: e -nucleus scattering A coherent and accurate picture of the way electrons interact with nuclei in a wide range of energy and momenta exists, provided that two-body correlations and two-body currents are accounted for! 58 / 31

  41. Electromagnetic Currents from Nuclear Interactions q · j = [ H , ρ ] = � t i + υ ij + V ijk , ρ � 1) Longitudinal component fixed by current conservation 2) Plus transverse “phenomenological” terms j (1) transverse = j π ρ ω π ∆ j (2) ( v ) + + + q N N j (3) ( V ) + Villars, Myiazawa (40-ies), Chemtob, Riska, Schiavilla . . . see, e.g. , Marcucci et al. PRC 72 (2005)014001 and references therein 59 / 31

  42. Currents from nuclear interactions Satisfactory description of a variety of nuclear em properties in A ≤ 12 2 H(p, γ ) 3 He capture 0.5 0.4 S(E) (eV b) 0.3 LUNA 0.2 Griffiths et al. Schmid et al. 0.1 0 0 10 20 30 40 50 E CM (keV) Marcucci et al. PRC 72 , 014001 (2005) 60 / 31

  43. Currents from χ EFT - Time-Ordered-Perturbation Theory The relevant degrees of freedom of nuclear physics are bound states of QCD * non relativistic nucleons N * pions π as mediators of the nucleon-nucleon interaction * non relativistic Delta’s ∆ with m ∆ ∼ m N + 2 m π Transition amplitude in time-ordered perturbation theory � n − 1 ∞ � 1 T f i = � N ′ N ′ | H 1 | NN � ∗ ∑ E i − H 0 + i η H 1 n = 1 - - H 0 = free π , N, ∆ Hamiltonians - H 1 = interacting π , N, ∆ , and external electroweak fields Hamiltonians T f i = � N ′ N ′ | T | NN � ∝ υ ij , T f i = � N ′ N ′ | T | NN ; γ � ∝ ( A 0 ρ ij , A · j ij ) ∗ A µ = ( A 0 , A ) photon field 61 / 31

  44. External Electromagnetic Field ∼ e Q 0 ∼ e Q 0 ∼ e Q ∼ e Q H γ CT H γπ NN H γπ N∆ H γππ “Minimal” Electromagnetic Vertices * EM H 1 obtained by minimal substitution in the π - and N-derivative couplings (same as doing p → p + e A , minimal coupling) ∇ π ∓ ( x ) → [ ∇ ∓ ie A ( x )] π ∓ ( x ) ∇ N ( x ) → [ ∇ − iee N A ( x )] N ( x ) , e N = ( 1 + τ z ) / 2 * same LECs as the Strong Vertices * * This is equivalent to say that the currents are conserved, i.e. , the continuity equation is satisfied 62 / 31

  45. External Electromagnetic Field µ p , µ n d ′ 8 , d ′ 9 , d ′ C ′ 15 , C ′ 21 16 H (2) H γNN H CT γ, nm γπNN “Non-Minimal” Electromagnetic Vertices * EM H 1 involving the tensor field F µν = ( ∂ µ A ν − ∂ ν A µ ) LECs are not constrained by the strong interaction there are additional LECs fixed to EM observables * H γ NN obtained by non-relativistic reduction of the covariant single nucleon currents constrained to µ p = 2 . 793 n.m. and µ n = − 1 . 913 n.m. * H γπ NN involves ∇ π and ∇ N and 3 new LECs (2 of them “mimicking” ∆ ) * H CT 2 γ involves 2 new LECs * These are the so called the “transverse” currents 63 / 31

  46. EM Currents j from Chiral Effective Field Theory : j ( − 2) ∼ eQ − 2 LO NLO : j ( − 1) ∼ eQ − 1 N 2 LO : j ( − 0) ∼ eQ 0 * Note that j π satisfies the continuity equation with υ π (can be done analytically) − g 2 σ 1 · k σ 2 · k A υ π ( k ) = τ 1 · τ 2 F 2 ω 2 π k − ie g 2 σ 2 · k 2 A j π ( k 1 , k 2 ) = ( τ 1 × τ 2 ) z σ 1 + 1 ⇋ 2 F 2 ω 2 π k 2 ie g 2 k 1 − k 2 A + ( τ 1 × τ 2 ) z σ 1 · k 1 σ 2 · k 2 F 2 ω 2 k 1 ω 2 π k 2 * LO = one-body current * 64 / 31

  47. EM Currents j from Chiral Effective Field Theory : j ( − 2) ∼ eQ − 2 LO NLO : j ( − 1) ∼ eQ − 1 N 2 LO : j ( − 0) ∼ eQ 0 N 3 LO : j (1) ∼ eQ unknown LEC ′ s No three-body currents at this order! * Analogue expansion exists for the Time Component (Charge Operator) ρ * Two-body corrections to the one-body Charge Operator appear at N3LO Pastore et al. PRC78(2008)064002 & PRC80(2009)034004 & PRC84(2011)024001 * analogue expansion exists for the Axial nuclear current - Baroni et al. PRC93 (2016)015501 * also derived by Park+Min+Rho NPA596(1996)515, K¨ olling+Epelbaum+Krebs+Meissner PRC80(2009)045502 & PRC84(2011)054008 65 / 31

  48. Electromagnetic LECs d V 1 , d V 2 d S , d V 1 , d V c S , c V 2 Isovector d V 2 = 4 µ ∗ h A / 9 m N ( m ∆ − m N ) and d S , d V 1 , and d V 2 could be determined by d V 1 = 0 . 25 × d V 2 πγ -production data on the nucleon assuming ∆ -resonance saturation Left with 3 LECs: Fixed in the A = 2 − 3 nucleons’ sector * Isoscalar sector: * d S and c S from EXPT µ d and µ S ( 3 H/ 3 He) * Isovector sector: * c V from EXPT npd γ xsec. or * c V from EXPT µ V ( 3 H/ 3 He) m.m. 66 / 31

  49. Low-energy observables and ground state properties np capture x-section/ µ V of A = 3 nuclei 360 γ 3 H/ 3 He) -1.8 σ µ V ( np 340 -2 320 -2.2 n.m. mb 300 -2.4 LO NLO N2LO 280 -2.6 N3LO (no LECs) N3LO (full) 260 EXP -2.8 ��� ��� 500 600 Λ� (MeV) Λ� (MeV) Observable ∝ � Ψ f | j | Ψ i � Piarulli et al. PRC87(2013)014006 67 / 31

  50. Deuteron magnetic form factor 0 10 N3LO /NN(N3LO), Piarulli et al. j .. N3LO /NN(N2LO), Kolling et al. j -1 m/(M d µ d )|G M | 10 -2 10 (b) -3 10 0 1 2 3 4 5 6 7 -1 ] q [fm Observable ∝ � Ψ f | j | Ψ i � PRC86(2012)047001 & PRC87(2013)014006 68 / 31

  51. ✡ ☛ ✤ ✣ ✥ ✢ ❝ ✜ ⑤ ☞ ✌ ⑤ 12 C Charge form factor ✠ ✶ ✵ ✒ ✚ ✒ ✛ ✒ ✚ ✒✔ ☎ ✟ ✶ ✵ ✒ ✚ ✒ ✒ ✒ ✓ ✔ ✕ ✖ ✗ ✘✙ ☎ ✞ ✶ ✵ ❡✍ ✎ ☎ ✝ ✶ ✵ r ✟ ✏ r ✏✑ ✞ ✏ ✟ ☎ ✆ ✶ ✵ ✵ ✶ ✷ ✸ ✹ ✲ ✄ q �✁✂ ✮ ∝ � Ψ f | ρ | Ψ i � Lovato et al. PRL111(2013)092501 69 / 31

  52. 3 He and 3 H magnetic form factors 0 10 (a) (b) -1 10 |F T / µ | -2 10 3 He 3 H -3 10 -4 10 0 (c) (d) 10 -1 10 V | S | |F T |F T -2 LO /AV18+UIX 10 j N3LO /AV18+UIX j -3 LO /NN(N3LO)+3N(N2LO) 10 j N3LO /NN(N3LO)+3N(N2LO) j -4 10 0 1 2 3 4 0 1 2 3 4 5 -1 ] -1 ] q [fm q [fm 1b/1b+2b with AV18+UIX – 1b/1b+2b with χ -potentials NN(N3LO)+3N(N2LO) Observable ∝ � Ψ f | j | Ψ i � Piarulli et al. PRC87(2013)014006 70 / 31

  53. Magnetic Moments of Nuclei 4 � L p 3 9 B � S n 7 Li p � 9 Li S p 3 H 2 6 Li* 10 B 1 µ ( µ N ) 8 Li 8 B 2 H 6 Li 10 B* 0 GFMC(1b) 9 C GFMC(1b+2b) 9 Be 7 Be EXPT -1 3 He n -2 -3 m.m. THEO EXP 9 C -1.35(4)(7) -1.3914(5) 9 Li 3.36(4)(8) 3.4391(6) chiral truncation error based on EE et al. error algorithm, Epelbaum, Krebs, and Meissner EPJA51(2015)53 Pastore et al. PRC87(2013)035503 71 / 31

  54. One-body magnetic densities 0.04 0.03 7 Li( 3 / 2 - ) 8 Li(2 + ) 9 Li( 3 / 2 - ) ρ µ (r) ( µ N fm -3 ) 0.02 0.01 0.00 p L -0.01 p S n S -0.02 µ (IA) -0.03 0.03 7 Be( 3 / 2 - ) 8 B(2 + ) 9 C( 3 / 2 - ) ρ µ (r) ( µ N fm -3 ) 0.02 0.01 0.00 -0.01 -0.02 -0.03 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 r (fm) r (fm) r (fm) 1b magnetic moment operator µ 1b = µ N ∑ [( L i + g p S i )( 1 + τ i , z ) / 2 + g n S i ( 1 − τ i , z ) / 2 ] i 72 / 31

  55. Electromagnetic Reactions * ω ∼ few MeV, q ∼ 0: EM-decays * ω ∼ 10 2 MeV: e -nucleus scattering A coherent and accurate picture of the way electrons interact with nuclei in a wide range of energy and momenta exists, provided that two-body correlations and two-body currents are accounted for! 73 / 31

  56. Electromagnetic Transitions in Light Nuclei * 2b electromagnetic currents bring - � 9 Be( 5 / 2 3 / 2 - ) B(E2) the THEORY in agreement with - � 9 Be( 5 / 2 3 / 2 - ) B(M1) the EXPT 8 B(3 + � 2 + ) B(M1) * ∼ 40% 2b-current contribution found in 9 C m.m. 8 B(1 + � 2 + ) B(M1) * ∼ 60 − 70% of total 2b-current 8 Li(3 + � 2 + ) B(M1) component is due to 8 Li(1 + � 2 + ) B(M1) one-pion-exchange currents 7 Be( 1 / 2 - � 3 / 2 - ) B(M1) * ∼ 20-30% 2b found in M1 transitions in 8 Be 7 Li( 1 / 2 - � 3 / 2 - ) B(E2) 7 Li( 1 / 2 - � 3 / 2 - ) B(M1) One M1 prediction: 9 Li(1 / 2 → 3 / 2)* 6 Li(0 + � 1 + ) B(M1) + a number of B(E2)s EXPT GFMC(1b) GFMC(1b+2b) *2014 TRIUMF proposal Ricard-McCutchan et al. 0 1 2 3 Ratio to experiment Pastore et al. PRC87(2013)035503 & PRC90(2014)024321, Datar et al. PRL111(2013)062502 74 / 31

  57. Electromagnetic Reactions * ω ∼ few MeV, q ∼ 0: EM-decays * ω ∼ 10 2 MeV: e -nucleus scattering A coherent and accurate picture of the way electrons interact with nuclei in a wide range of energy and momenta exists, provided that two-body correlations and two-body currents are accounted for! 75 / 31

  58. Back-to-back np and pp Momentum Distributions 12 C 10 B 10 5 8 Be 10 5 10 3 6 Li 10 5 10 3 10 1 4 He 10 5 10 3 ρ pN (q,Q=0) (fm 3 ) 10 1 10 5 10 -1 10 3 0 1 2 3 4 5 10 1 10 -1 10 3 0 1 2 3 4 5 10 1 10 -1 0 1 2 3 4 5 10 1 10 -1 0 1 2 3 4 5 10 -1 0 1 2 3 4 5 q (fm -1 ) Wiringa et al. - PRC89(2014)024305 Nuclear properties are strongly affected by correlations! Triple coincidence reactions A ( e , e ′ np or pp ) A − 2 measurements at JLab on 12 C indicate that at high values of relative momenta (400 − 500 MeV), ∼ 90% of the pairs are in the form of np pairs and ∼ 5% in pp pairs 76 / 31

  59. Two-body momentum distributions: Where to find them 1-body momentum distributions http://www.phy.anl.gov/theory/research/momenta/ 2-body momentum distributions http://www.phy.anl.gov/theory/research/momenta2/ 77 / 31

  60. Inclusive ( e , e ′ ) scattering * inclusive xsecs * d 2 σ dE ′ d Ω e ′ = σ M [ v L R L ( q , ω )+ v T R T ( q , ω )] |� f | O α ( q ) | 0 �| 2 R α ( q , ω ) = ∑ � � δ ω + E 0 − E f f Longitudinal response induced by O L = ρ Transverse response induced by O T = j * Sum Rules * Exploit integral properties of the response functions + ℓ ′ closure to avoid explicit calculation of the final states � ∞ q S ( q , τ ) = 0 d ω K ( τ , ω ) R α ( q , ω ) ℓ * Coulomb Sum Rules * � ∞ 0 d ω R α ( q , ω ) ∝ � 0 | O † S α ( q ) = α ( q ) O α ( q ) | 0 � 78 / 31

  61. Sum Rules and the role of two-body currents 3 1−body (1+2)−body 2.5 4 He 6 Li 2 S T (q)/S L (q) 1.5 3 He 1 0.5 200 300 400 500 600 700 800 q(MeV/c) Carlson, Jourdan, Schiavilla, and Sick PRC65(2002)024002 79 / 31

  62. Sum Rules and Two-Body Physics 3 1−body (1+2)−body • S T ( q ) ∝ � 0 | j † j | 0 � 2.5 4 He 6 Li • j = j 1 b + j 2 b 2 S T (q)/S L (q) • enhancement of the transverse 1.5 response is due to interference between 3 He 1 1b and 2b contributions AND presence of correlations in the wave function • 0.5 200 300 400 500 600 700 800 q(MeV/c) PRC65(2002)024002 � j † 1 b j 1 b � > 0 � j † 1 b j 2 b v π � ∝ � v 2 π � > 0 80 / 31

  63. ☛ ✔ ✕ ☞ ☛ ✡ ✠ ✟ ✕ ✓ ✓ ✒ ✑ ✏ ✎ ✍ ✌ ☞ ✡ ✔ ✒ ✟ ✌ ✕ ✔ ✓ ✒ ✑ ✏ ✎ ✍ ✟ ✑ ✠ ✡ ☛ ☞ ✌ ✍ ✎ ✏ ✠ Recent Developments on 12 C � ✁ � ✞ ✖✗ ✘✙ ✚ ✛ ✜ ✢✣ ✤✥ ✦ ✧ ★ ✩ ✪ ★ � ✁ � ✝ ✫ ✬ ✭ ✮ ✯ ✰ ✱ ✲ ✳ ✳ ✴ ✵ ✴ ✶✷ ✸ ✹ ✷ ✺ ✻✷ ✼ ✷ ✄ ☎ ✄ ✆ � ✁ � ✂ � ✁ � � � ✁ � ✞ � ✁ � ✝ ✄ ☎ ✄ ✆ � ✁ � ✂ � ✁ � � � ✁ � ✞ � ✁ � ✝ ✄ ☎ ✄ ✆ � ✁ � ✂ � ✁ � � ✽ ✾ ✿ ❀ ❁ ❁ ❀ ❂ ❁ ❃ ❁ ❁ ❃ ❂ ❁ ❄ ❁ ❁ ❄ ❂ ❁ ❅ ❆ ❆ ❇ ❈ ❉❊ ❋ ● q = [ 300 − 750 ] MeV ∼ 100 million core hours Lovato, Gandolfi et al. PRC91(2015)062501 + arXiv:1605.00248 Two-body correlations and currents essential to explain the data! 81 / 31

  64. Electromagnetic Reactions * ω ∼ few MeV, q ∼ 0: EM-decays * ω ∼ 10 2 MeV: e -nucleus scattering A coherent and accurate picture of the way electrons interact with nuclei in a wide range of energy and momenta exists, provided that two-body correlations and two-body currents are accounted for! 82 / 31

  65. ✌ ✔ ✟ ☞ ☛ ✡ ✠ ✟ ✕ ✓ ✎ ✒ ✑ ✏ ✎ ✍ ✌ ☞ ☛ ✍ ✏ ✠ ✌ ✕ ✔ ✓ ✒ ✑ ✏ ✎ ✍ ☞ ✑ ☛ ✡ ✠ ✟ ✕ ✔ ✓ ✒ ✡ EM Moments, EM Decays and e -scattering off nuclei 9 Be( 5 / 2 - � 3 / 2 - ) B(E2) � ✁ � ✞ ✖✗ ✘✙ ✚ ✛ ✜ ✢✣ ✤✥ ✦ ✧ ★ ✩ ✪ ★ - � � ✁ � ✝ ✫ ✬ ✭ ✮ 9 Be( 5 / 2 3 / 2 - ) B(M1) ✯ ✰ ✱ ✲ ✳ ✳ ✴ ✵ ✴ ✶✷ ✸ ✹ ✷ ✺ ✻✷ ✼ ✷ ✄ ☎ ✄ ✆ 4 8 B(3 + � 2 + ) B(M1) � ✁ � ✂ 3 8 B(1 + � 2 + ) B(M1) 9 B 7 Li p � ✁ � � 9 Li 3 H 2 8 Li(3 + � 2 + ) B(M1) � ✁ � ✞ 6 Li* 10 B � ✁ � ✝ 8 Li(1 + � 1 2 + ) B(M1) µ ( µ N ) 8 Li 8 B 2 H 6 Li ✄ ☎ ✄ ✆ 10 B* 7 Be( 1 / 2 - � 3 / 2 - ) B(M1) 0 GFMC(1b) 9 C � ✁ � ✂ GFMC(1b+2b) 9 Be 7 Be 7 Li( 1 / 2 - � 3 / 2 - ) B(E2) EXPT -1 � ✁ � � 3 He n � ✁ � ✞ 7 Li( 1 / 2 - � 3 / 2 - ) B(M1) -2 � ✁ � ✝ 6 Li(0 + � 1 + ) B(M1) -3 ✄ ☎ ✄ ✆ EXPT GFMC(1b) GFMC(1b+2b) � ✁ � ✂ 0 1 2 3 � ✁ � � Ratio to experiment ✽ ✾ ✿ ❀ ❁ ❁ ❀ ❂ ❁ ❃ ❁ ❁ ❃ ❂ ❁ ❄ ❁ ❁ ❄ ❂ ❁ ❅ ❆ ❆ ❇ ❈ ❉❊ ❋ ● Electromagnetic data are explained when two-body correlations and currents are accounted for! Pastore et al. PRC87(2013)035503 - Lovato et al. PRC91(2015)062501 83 / 31

  66. Two-body Currents: Summary * Two-body correlations and currents are essential to explain the data * Two-body currents provide up to ∼ 40% contributions to the magnetic moments of nuclei (ground state observable) * Two-body currents enhance the transverse response up ∼ 50% (dynamical observable) * One-pion-exchange currents provide ∼ 0 . 8 j ij 84 / 31

  67. Neutrinos and Nuclei 85 / 31

  68. Towards a coherent and unified picture of neutrino-nucleus interactions * ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays * ω � tens MeV: Nuclear Rates for Astrophysics * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 86 / 31

  69. Neutrinos and Nuclei: Challenges and Opportunities Beta Decay Rate Neutrino-Nucleus Scattering 12 C CCQE on 8 7 6 5 2 ] -38 cm Ankowski, SF 4 Athar, LFG+RPA σ [x 10 Benhar, SF GiBUU 3 Madrid, RMF Martini, LFG+RPA Nieves, LFG+SF+RPA 2 RFG, M A =1 GeV RFG, M A =1.35 GeV 1 Martini, LFG+2p2h+RPA 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] Alvarez-Ruso arXiv:1012.3871 → g eff in 3 ≤ A ≤ 18 − A ≃ 0 . 80 g A Chou et al. PRC47(1993)163 87 / 31

  70. Standard Beta Decay The “ g A problem” and the role of two-body correlations and two-body currents e − ν e ¯ W ± g A * Matrix Element � Ψ f | GT | Ψ i � ∝ g A and Decay Rates ∝ g 2 A * ( Z , N ) → ( Z + 1 , N − 1 )+ e + ¯ ν e 88 / 31

  71. “Anomalies” q ∼ 0: The “ g A problem” Gamow-Teller Matrix Elements Theory vs Expt → g eff in 3 ≤ A ≤ 18 − A ≃ 0 . 80 g A Chou et al. PRC47(1993)163 Missing Physics: 1. Correlations and/or 2. Two-body currents 89 / 31

  72. Nuclear Interactions and Axial Currents A υ ij + ∑ ∑ t i + ∑ H = T + V = V ijk + ... i = 1 i < j i < j < k so far results are available with AV18+IL7 ( A ≤ 10) and SNPA or chiral currents ( a.k.a. hybrid calculations) * c 3 and c 4 are taken them from Entem and Machleidt PRC68(2003)041001 & LO Phys.Rep.503(2011)1 * c D fitted to GT m.e. of tritium N 3 LO Baroni et al. PRC94(2016)024003 * cutoffs Λ = 500 and 600 MeV * include also N4LO 3b currents (tiny) + ... N 4 LO * derived by Park et al. in the ′ 90 used (mainly at tree-level) in many calculations A. Baroni et al. PRC93(2016)015501 * pion-pole at tree-level derived H. Krebs et al. Ann.Phy.378(2017) by Klos, Hoferichter et al. PLB(2015)B746 90 / 31

  73. Single Beta Decay Matrix Elements in A = 6–10 10 C 10 B 7 Be 7 Li(ex) 7 Be 7 Li(gs) 6 He 6 Li 3 H 3 He Ratio to EXPT gfmc 1b gfmc 1b+2b(N4LO) Chou et al. 1993 - Shell Model - 1b 1 1.1 1.2 gfmc (1b) and gfmc (1b+2b); shell model (1b) Pastore et al. PRC97(2018)022501 A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003 Based on g A ∼ 1 . 27 no quenching factor ∗ data from TUNL, Suzuki et al. PRC67(2003)044302, Chou et al. PRC47(1993)163 91 / 31

  74. 10 B + ,1) (0 < 0.08 % 10 C 98.54(14)% E ~ 2.15 MeV + ,0) (1 + ,1) (0 E ~ 0.72 MeV + ,0) (1 + ,0) (3 10 B * In 10 B, ∆ E with same quantum numbers ∼ 1 . 5 MeV * In A = 7, ∆ E with same quantum numbers � 10 MeV 92 / 31

  75. Nuclei for Accelerator Neutrinos’ Experiments LBNF T2K 12 C CCQE on Neutrino-Nucleus scattering 8 7 ℓ ′ 6 q 5 2 ] -38 cm Ankowski, SF ℓ 4 Athar, LFG+RPA σ [x 10 Benhar, SF GiBUU 3 Madrid, RMF Martini, LFG+RPA Nieves, LFG+SF+RPA 2 � ∆ m 2 RFG, M A =1 GeV � 21 L RFG, M A =1.35 GeV P ( ν µ → ν e ) = sin 2 2 θ sin 2 1 Martini, LFG+2p2h+RPA 2 E ν 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] Alvarez-Ruso arXiv:1012.3871 * Nuclei of 12 C , 40 Ar , 16 O , 56 Fe , ... * are the DUNE, MiniBoone, T2K, Miner ν a ... detectors’ active material 93 / 31

  76. Nuclei for Accelerator Neutrinos’ Experiments: More in Detail Neutrino Flux Tomasz Golan Phil Rodrigues * Oscillation Probabilities depend on the initial neutrino energy E ν * Neutrinos are produced via decay-processes, E ν is unknown! � � ∆ m 2 21 L P ( ν µ → ν e ) = sin 2 2 θ sin 2 2 E ν * E ν is reconstructed from the final state observed in the detector * !! Accurate theoretical neutrino-nucleus cross sections are vital !! to E ν reconstruction 94 / 31

  77. e − A and ν − A Scattering µ Boone 95 / 31

  78. Inclusive ( e , ν scattering * inclusive xsecs * d 2 σ dE ′ d Ω e ′ = σ M [ v L R L ( q , ω )+ v T R T ( q , ω )] |� f | O α ( q ) | 0 �| 2 R α ( q , ω ) = ∑ � � δ ω + E 0 − E f f Longitudinal response induced by O L = ρ Transverse response induced by O T = j ... 5 nuclear responses in ν -scattering... * Sum Rules * Exploit integral properties of the response functions + ℓ ′ closure to avoid explicit calculation of the final states � ∞ q S ( q , τ ) = 0 d ω K ( τ , ω ) R α ( q , ω ) ℓ * Coulomb Sum Rules * � ∞ 0 d ω R α ( q , ω ) ∝ � 0 | O † S α ( q ) = α ( q ) O α ( q ) | 0 � 96 / 31

  79. P ◆ ❚ ❯ ❙ ❘ ◆ ◗ ◆ ❖ ▼ ✓ ❚ ❙ ❘ ◆ ◗ ◆ ▼ ◆ ✒ ✔ P ✣ ✪ ✩ ★ ✥ ✧ ✦ ✥ ✤ ✢ ✒ ✜ ✛ ✚ ✙ ✘ ✗ ✖ ✒ ✕ ❖ ◆ ▼ ✛ ✥ ✧ ✦ ✥ ✤ ✣ ✢ ✜ ✚ ✩ ✙ ✘ ✗ ✖ ✒ ✕ ✒ ✔ ★ ✪ ◗ ◆ ◆ ❘ ❙ ❚ ▼ ◆ ❖ P ◗ ✫ ◆ ❘ ❙ ❯ ❚ P ❖ ◆ ▼ ✫ ◆ ✒ ✢ ✩ ★ ✥ ✧ ✦ ✥ ✤ ✣ ✜ ✫ ✛ ✚ ✙ ✘ ✗ ✖ ✒ ✕ ✪ ▼ ✔ ❖ ❚ ❯ ❙ ❘ ◆ ◗ ◆ P ◆ ◆ ▼ ❚ ❙ ❘ ◆ ◗ ◆ P ❖ ✒ ✓ ❖ ✢ ✒ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✣ ✒ ✤ ✥ ✦ ✧ ✥ ★ ✩ ✪ ✫ ✕ ✔ ✒ ❖ ❚ ❯ ❙ ❘ ◆ ◗ ◆ P ◆ ✓ ▼ ❚ ❙ ❘ ◆ ◗ ◆ P ✒ ✓ Recent Developments on 12 C : Inclusive QE Scattering NC Inclusive Xsec ✡ ☛ ☞ ✬ ❇ ❈ ■ ✭ ✮ ✯ ✰ Charge-Current Cross Section ✱ ✝ ✠ ✞ ✲ ✳ ✴ ✵ ✶ ✷ ❇ ❈ ❍ ✹ ✸ ✝ ✟ ✠ ✺ ✻ ✼ ✽ ✾ ✿ ❭ ❪ ❫ ❴ ❀ ❁ 12 C ❊ ❋ ● ❂ ❃ ❵❛ CCQE on ✝ ✞ ✞ ❄ ❅ ❆ ❜❝❞ ❇ ❈ ❉ ☎ ✆ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✝ ✞ ✞ ✟ ✞ ✞ ❏ ✞ ✞ ❑ ▲ ▲ 8 ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✍ ✎ ✍ ✎ ✍ ✎ ✍ ✎ ✍ ✎ ✍ ✎ ✍ ✎ ✍ ✎ ❱ ❲ ❳❨ ❩ ❬ ✂ ✄ 7 ✁ ✂ � ✂ ✄ 6 ♣ ● ❋ ✏ ✏ ✏ ✏ ✏ ✏ ✑ ✑ ✑ ✑ ✑ ✑ ✌ ✌ ✌ ✌ ✌ ✌ ✐ ❥ ✐ ❥ ✐ ❥ ✐ ❥ ✐ ❥ ✐ ❥ ❣ ❤ ♥ ♦ ♥ 5 2 ] -38 cm ❧ ❈ ♠ Ankowski, SF ❢ ✄ 4 Athar, LFG+RPA σ [x 10 ❇ ❈ ❦ Benhar, SF ✟ ❏ ✁ ✄ ✝ ✞ ✞ ✞ ✞ ✞ ✞ ❑ ▲ ▲ GiBUU 3 ❱ ❲ ❳❨ ❩ ❬ Madrid, RMF ❡ ✄ Martini, LFG+RPA Nieves, LFG+SF+RPA 2 RFG, M A =1 GeV � ❡ ✉ RFG, M A =1.35 GeV ② ✏ ✏ ✏ ✏ 1 ✑ ✑ ✑ ✑ ✌ ✌ ✌ ✌ ✈ ✈ ✈ ✈ ❥ ❥ ❥ ❥ Martini, LFG+2p2h+RPA s t ① 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] r ✇ ✝ ✞ ✞ ✟ ✞ ✞ ❏ ✞ ✞ ❑ ▲ ▲ Alvarez-Ruso arXiv:1012.3871 ❱ ❲ ❳❨ ❩ ❬ q CHALLENGES: � ⑦ ❾ ❿ ❹ ❹ ⑨ ⑨ ⑩ ⑩ ❶ ❷ ❶ ❷ ❸ ❸ ⑥ ❼ ❽ q ❻ 1. How do we describe electroweak-scattering off ⑤ ❺ ✝ ✞ ✞ ✟ ✞ ✞ ❏ ✞ ✞ ❑ ▲ ▲ ④ A > 12 without loosing two-body physics ❱ ❲ ❳❨ ❩ ❬ ③ (correlations and two-body currents)? � � ✂ ✄ ✝ ✞ ✞ ✝ ✠ ✞ ✟ ✞ ✞ ✟ ✠ ✞ ❏ ✞ ✞ ❏ ✠ ✞ ❑ ▲ ▲ ❑ ⑧ ▲ 2. How to incorporate (more) exlusive processes? ❱ ❲ ❳ ❨ ❩ ❬ q = 750 MeV Lovato & Gandolfi et al. PRC97(2018)022502 ∼ 100 million core hours 97 / 31

  80. Scaling properties of the Response Functions Inclusive xsec depends on a single (scaling) function of ω and q Scaling 2 nd kind: independence form A Donnelly and Sick - PRC60(1999)065502 1. Rely on observed scaling properties of inclusive xsecs, universal behavior of nucleon/ A momentum distributions, and exhibited locality of nuclear properties to build approximate response functions for A > 12 nuclei 2. From exact ab initio calculations we know that two-body correlations and two-body currents are crucial 3. Build a model that retains two-body physics 98 / 31

  81. Factorization: Short-Time Approximation � 0 | O † R α ( q , ω ) = ∑ � � δ ω + E 0 − E f α ( q ) | f �� f | O α ( q ) | 0 � f � α ( q ) e i ( H − ω ) t O α ( q ) | 0 � dt � 0 | O † R α ( q , ω ) = At short time, expand P ( t ) = e i ( H − ω ) t and keep up to 2b-terms H ∼ ∑ t i + ∑ υ ij i < j i and O † i P ( t ) O i + O † i P ( t ) O j + O † i P ( t ) O ij + O † ij P ( t ) O ij 1b 2b ℓ ′ ℓ ′ q q ℓ ℓ WITH Carlson & Gandolfi (LANL) & Schiavilla (ODU+JLab) & Wiringa (ANL) 99 / 31

  82. Factorization up to one body - The Plane Wave Impulse Approximation ℓ ′ In PWIA: q Response functions given by incoherent scattering off single nucleons that propagate freely in the final state ℓ (plane waves) = ∑ � 0 | O † � � R α ( q , ω ) δ ω + E 0 − E f α ( q ) | f �� f | O α ( q ) | 0 � f ( 1 ) ( q ) = 1b O α ( q ) = O α e i ( k + q ) · r = free single nucleon w . f . | f � ∼ * PWIA Longitudinal Response in terms of the p -momentum distribution n p ( k ) * ω − ( k + q ) 2 + k 2 � � � PWIA ( q , ω ) R L = d k n p ( k ) δ 2 m N 2 m N A 1 + τ i , z ( 1 ) ( q ) e i q · r i ∑ = O L e 2 i = 1 100 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend