few body physics with relation to neutrinos
play

Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS - PowerPoint PPT Presentation

Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS Summer School Jefferson Lab - Newport News VA, June 2018 bla Thanks to the Organizers 1 / 78 Neutrinos (Fundamental Symmetries) and Nuclei Topics (5 hours) * Nuclear Theory for


  1. Few-Body Physics with Relation to Neutrinos Saori Pastore HUGS Summer School Jefferson Lab - Newport News VA, June 2018 bla Thanks to the Organizers 1 / 78

  2. Neutrinos (Fundamental Symmetries) and Nuclei Topics (5 hours) * Nuclear Theory for the Neutrino Experimental Program � * Microscopic (or ab initio ) Description of Nuclei � * “Realistic” Models of Two- and Three-Nucleon Interactions ∼ � * “Realistic” Models of Many-Body Nuclear Electroweak Currents * Short-range Structure of Nuclei and Nuclear Correlations * Quasi-Elastic Electron and Neutrino Scattering off Nuclei * Validation of the theory against available data 2 / 78

  3. Nuclei for Accelerator Neutrinos’ Experiments LBNF T2K 12 C CCQE on Neutrino-Nucleus scattering 8 7 ℓ ′ 6 q 5 2 ] -38 cm Ankowski, SF ℓ 4 Athar, LFG+RPA σ [x 10 Benhar, SF GiBUU 3 Madrid, RMF Martini, LFG+RPA Nieves, LFG+SF+RPA 2 � ∆ m 2 RFG, M A =1 GeV � 21 L RFG, M A =1.35 GeV P ( ν µ → ν e ) = sin 2 2 θ sin 2 1 Martini, LFG+2p2h+RPA 2 E ν 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E ν [GeV] Alvarez-Ruso arXiv:1012.3871 * Nuclei of 12 C , 40 Ar , 16 O , 56 Fe , ... * are the DUNE, MiniBoone, T2K, Miner ν a ... detectors’ active material 3 / 78

  4. Nuclear Physics for Neutrinoless Double Beta Decay Searches ✦ ✦ ✦ ✦ ✦ ✦ ✦ Majorana Demonstrator J. Engel and J. Men´ endez - arXiv:1610.06548 0 νββ -decay τ 1 / 2 � 10 25 years (age of the universe 1 . 4 × 10 10 years) need 1 ton of material to see (if any) ∼ 5 decays per year * Decay Rate ∝ (nuclear matrix elements) 2 ×� m ββ � 2 * 2015 Long Range Plane for Nuclear Physics 4 / 78

  5. Nuclear Structure and Dynamics * ω ∼ few MeV, q ∼ 0: EM decay, β -decay, ββ -decays * ω � tens MeV: Nuclear Rates for Astrophysics * ω ∼ 10 2 MeV: Accelerator neutrinos, ν -nucleus scattering 5 / 78

  6. The Microscopic (or ab initio ) Description of Nuclei ℓ ′ q ℓ Develop a comprehensive theory that describes quantitatively and predictably all nuclear structure and reactions * Accurate understanding of interactions between nucleons, p ’s and n ’s * and between e ’s, ν ’s, DM , ... , with nucleons, nucleons-pairs, ... H Ψ = E Ψ Ψ ( r 1 , r 2 , ..., r A , s 1 , s 2 , ..., s A , t 1 , t 2 , ..., t A ) Erwin Schr¨ odinger 6 / 78

  7. Nuclear Force These Days * 1930s Yukawa Potential * 1960–1990 Highly sophisticated meson exchange potentials * 1990s– Highly sophisticated Chiral Effective Field Theory based potentials π π π Hideki Yukawa Steven Weinberg * Contact terms: short-range 1 * One-pion-exchange: range ∼ m π 1 * Two-pion-exchange: range ∼ 2 m π 7 / 78

  8. Nuclear Interactions and the role of the ∆ Courtesy of Maria Piarulli * N3LO with ∆ nucleon-nucleon interaction constructed by Piarulli et al. in PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 with ∆ ′ s fits ∼ 2000 ( ∼ 3000) data up 125 (200) MeV with χ 2 /datum ∼ 1; * N2LO with ∆ 3-nucleon force fits 3 H binding energy and the nd scattering length υ 12 = ∑ υ p O 12 = [ 1 , σ 1 · σ 2 , S 12 , L · S , L 2 , L 2 σ 1 · σ 2 , ( L · S ) 2 ] ⊗ [ 1 , τ 1 · τ 2 ] 12 ( r ) O 12 ; p + operators 4 terms breaking charge independence 8 / 78

  9. Phenomenological aka Conventional aka Traditional aka Realistic Two- and Three- Nucleon Potentials Courtesy of Bob Wiringa * AV18 fitted up to 350 MeV, reproduces phase shifts up to ∼ 1 GeV * * IL7 fitted to 23 energy levels, predicts hundreds of levels * 9 / 78

  10. Nucleon-nucleon potential Aoki et al. Comput.Sci.Disc.1(2008)015009 CT = Contact Term ∗ - short-range; 1 OPE = One Pion Exchange - range ∼ m π ; 1 TPE = Two Pion Exchange - range ∼ 2 m π ∗ in practice CT’s in r -space are coded with representations of a δ -function ( e.g. , a Gaussian function), or special functions such as Wood-Saxon functions 10 / 78

  11. ρ , ω , σ -exchange The One Boson Exchange (OBE) Lagrangians scalar − g S 0 ¯ − g S 1 ¯ ψψφ S 0 ψτψ · � φ S 1 pseudo-scalar − ig PS 0 ¯ − ig PS 1 ¯ ψγ 5 ψφ PS 0 ψγ 5 τψ · � φ PS 1 vector − g V 0 ¯ ψγ µ ψφ V 0 µ − g V 1 ¯ ψγ µ τψ · � φ V 1 µ tensor − g T 0 − g T 1 ψσ µν ψ∂ ν φ T 0 ψσ µν τψ · ∂ ν � φ T 1 2 m T 0 ¯ 2 m T 1 ¯ µ µ slide from my 15 mins HUGS talk... 11 / 78

  12. CD Bonn Potential g 2 g T J π Mass (MeV) I 4 π g V π ± 0 − 139.56995 1 13.6 PS 1 0 − π 0 134.9764 1 13.6 PS 1 0 − η 547.3 0 0.4 PS 0 ρ ± , ρ 0 1 − 769.9 1 0.84 6.1 V 1; T 1 1 − ω 781.94 0 20.0 0.0 V 0; T 0 0 + σ 400-1200 0 S 0 R.Machleidt, Phys.Rev. C 63 , 014001 (2001) O 12 = [ 1 , σ 1 · σ 2 , S 12 , L · S ] ⊗ [ 1 , τ 1 · τ 2 ] vs O 12 = [ 1 , σ 1 · σ 2 ] ⊗ [ 1 , τ 1 · τ 2 ] ; S 12 from2 π − exchange slide from my 15 mins HUGS... 12 / 78

  13. Nucleon-Nucleon Potential and the Deuteron M = ± 1 M = 0 Carlson and Schiavilla Rev.Mod.Phys.70(1998)743 13 / 78

  14. Quantum Monte Carlo Methods ℓ ′ q ℓ Solve numerically the many-body problem H Ψ = E Ψ Ψ ( r 1 , r 2 , ..., r A , s 1 , s 2 , ..., s A , t 1 , t 2 , ..., t A ) Ψ are spin-isospin vectors in 3 A dimensions with 2 A × A ! Z ! ( A − Z ) ! components 4 He : 96 6 Li : 1280 8 Li : 14336 12 C : 540572 14 / 78

  15. Variational Monte Carlo (VMC) Minimize expectation value of H = T + AV18 + IL7 E V = � Ψ V | H | Ψ V � ≥ E 0 � Ψ V | Ψ V � using trial function � �� � S ∏ ( 1 + U ij + ∑ ∏ | Ψ V � = U ijk ) f c ( r ij ) | Φ A ( JMTT 3 ) � i < j k � = i , j i < j * single-particle Φ A ( JMTT 3 ) is fully antisymmetric and translationally invariant * central pair correlations f c ( r ) keep nucleons at favorable pair separation * pair correlation operators U ij reflect influence of υ ij (AV18) * triple correlation operators U ijk reflect the influence of V ijk (IL7) Lomnitz-Adler, Pandharipande, and Smith NPA361(1981)399 Wiringa, PRC43(1991)1585 15 / 78

  16. Green’s function Monte Carlo (GFMC) Ψ V can be further improved by “filtering” out the remaining excited state contamination Ψ ( τ ) = exp [ − ( H − E 0 ) τ ] Ψ V = ∑ exp [ − ( E n − E 0 ) τ ] a n ψ n n Ψ ( τ → ∞ ) = a 0 ψ 0 In practice, we evaluate a “mixed” estimates � O ( τ ) � = f � Ψ ( τ ) | O | Ψ ( τ ) � i Mixed + � O ( τ ) � f ≈ � O ( τ ) � i Mixed −� O � V � Ψ ( τ ) | Ψ ( τ ) � Mixed = f � Ψ V | O | Ψ ( τ ) � i f � Ψ ( τ ) | O | Ψ V � i ; � O ( τ ) � f � O ( τ ) � i Mixed = f � Ψ V | Ψ ( τ ) � i f � Ψ ( τ ) | Ψ V � i Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC 56 , 1720 (1997) Wiringa, Pieper, Carlson, & Pandharipande, PRC 62 , 014001 (2000) Pieper, Wiringa, & Carlson, PRC 70 , 054325 (2004) 16 / 78

  17. GFMC Energy calculation: An example -20 8 Be(3 + ) 8 Be(1 + ) 8 Be(4 + ) 8 Be(2 + ) -30 8 Be(gs) E( τ ) (MeV) -40 Fig. 6 (Wiringa, et al.) -50 0 0.05 0.1 0.15 0.2 τ (MeV -1 ) Wiringa et al. PRC62(2000)014001 17 / 78

  18. Spectra of Light Nuclei Carlson et al. Rev.Mod.Phys.87(2015)1067 18 / 78

  19. Spectra of Light Nuclei M. Piarulli et al. - arXiv:1707.02883 * one-pion-exchange physics dominates * * it is included in both chiral and “conventional” potentials * 19 / 78

  20. Three-body forces A υ ij + ∑ ∑ t i + ∑ H = T + V = V ijk + ... i = 1 i < j i < j < k V ijk ∼ ( 0 . 2 − 0 . 9 ) υ ij ∼ ( 0 . 15 − 0 . 6 ) H υ π ∼ 0 . 83 υ ij 10 B VMC code output Ti + Vij = -38.2131 (0.1433) + Vijk = -46.7975 (0.1150) Ti = 290.3220 (1.2932) Vij =-328.5351 (1.1983) Vijk = -8.5844 (0.0892) Two-body physics dominates! 20 / 78

  21. (Very) Incomplete List of Credits and Reading Material ∗ Pieper and Wiringa; Ann.Rev.Nucl.Part.Sci.51(2001)53 ∗ Carlson et al. ; Rev.Mod.Phys.87(2015)1067 ∗ van Kolck et al. ; PRL72(1994)1982-PRC53(1996)2086 ∗ Kaiser, Weise et al. ; NPA625(1997)758-NPA637(1998)395 ockle, Meissner ∗ ; RevModPhys81(2009)1773 and references therein ∗ Epelbaum, Gl¨ ∗ Entem and Machleidt ∗ ; PhysRept503(2011)1 and references therin * NN Potentials suited for Quantum Monte Carlo calculations * ∗ Pieper and Wiringa; Ann.Rev.Nucl.Part.Sci.51(2001)53 ∗ Gezerlis et al. and Lynn et al. ; PRL111(2013)032501,PRC90(2014)054323,PRL113(2014)192501 ; ∗ Piarulli et al. ; PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 21 / 78

  22. Summary: Nuclear Interactions * The Microscopic description of Nuclei is very successful * Nuclear two-body forces are constrained by large database of nucleon-nucleon scattering data * Intermediate– and long–range components are described in terms of one- and two-pion exchange potentials * Short-range parts are described by contact terms or special functions * Due to a cancellation between kinetic and two-body contribution, three-body potentials are (small but) necessary to reach (excellent) agreement with the data * Calculated spectra of light nuclei are reproduced within 1 − 2% of expt data * Two-body one-pion-exchange contributions dominate and are crucial to explain the data 22 / 78

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend