facility for antiproton and ion research
play

Facility for Antiproton and Ion Research Peter Senger Outline: The - PowerPoint PPT Presentation

neutron QCD matter physics at the future matter Facility for Antiproton and Ion Research Peter Senger Outline: The Facility on Antiproton and Ion Research Exploring cosmic matter in the laboratory: - the high-density nuclear matter


  1. neutron QCD matter physics at the future matter Facility for Antiproton and Ion Research Peter Senger Outline:  The Facility on Antiproton and Ion Research  Exploring cosmic matter in the laboratory: - the high-density nuclear matter equation-of-state - the QCD phase diagram  The Compressed Baryonic Matter (CBM) experiment 13 th International Conference on Nucleus-Nucleus Collisions, Saitama, Japan, Dec. 4 – 8, 2018

  2. Facility for Antiproton & Ion Research SIS100 /300 p-Linac SIS18 Compressed Baryonic Matter Primary Beams • 10 12 /s; 1.5 GeV/u; 238 U 28+ Anti-Proton • 10 10 /s 238 U 92+ up to 11 (35) GeV/u Physics • 3x10 13 /s 30 (90) GeV protons Super Fragment-Separator: HESR Nuclear Structure and Astrophysics Secondary Beams • radioactive beams up to 1.5 - 2 GeV/u; • 10 11 antiprotons 1.5 - 15 GeV/c Technical Challenges FAIR phase 1 CR • rapid cycling superconducting magnets FAIR phase 2 2 • dynamical vacuum 100 m

  3. Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac Compressed Baryonic Matter HESR Anti-Proton Physics Super Fragment- Separator: Nuclear Structure and Astrophysics NUSTAR: Rare Isotope beams CR FAIR phase 1 FAIR phase 2 100 m 3

  4. Nuclear astrophysics: The origin of elements Measurements in the laboratory: Mass, lifetime, decay channels, structure of very rare instable (neutron or proton rich) nuclei rp-, p- process: Synthesis of nuclei with masses close to and beyond the proton dripline in binary systems of a sun and a neutron star X-ray binary s- (slow) process: Synthesis of heavy nuclei via slow neutron capture in very massive stars r- (rapid) process: Synthesis of very neutron-rich instable nuclei via rapid capture of neutrons in neutron star mergers 4

  5. Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac Compressed Baryonic Matter HESR Anti-Proton Physics Super Fragment- Separator: Nuclear Structure and PANDA: Astrophysics Antiproton-proton collisions CR FAIR phase 1 FAIR phase 2 100 m 5

  6. Hadron Physics with antiprotons at FAIR Charmonium states: Gluonic excitations: Time-like form factors, Precision Hybrids, glueballs nucleon structure spectroscopy In medium mass modifications: Extension of nuclear chart: Extension to the charm sector Double hypernuclei p - 25 MeV p p + K + K 100 MeV K - D D - 50 MeV D +

  7. Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac HESR Anti-Proton Physics Super Fragment- Separator: Atomic Nuclear Structure and Astrophysics Physics Plasma & CR Applied Sciences FAIR phase 1 FAIR phase 2 100 m 7

  8. Atomic Physics, Plasma and Applied Sciences Bio Materials Atomic Physics Plasma MAT/BIOMAT BIO/BIOMAT SPARC FLAIR HEDgeHOB/WDM strong field anti-matter planetary extreme aerospace research interiors conditions engineering ... probing of ... matter / anti- ... states of matter ... radiation hardness ... radiation fundamental laws matter common in and modification of shielding of cosmic of physics asymmetry astrophysical objects materials radiation • Highest Charge States: Extreme Static Fields • Relativistic Energies: Extreme Dynamical Fields and Ultrashort Pulses • High Intensities: Very High Energy Densities and Pressures • High Charge at Low Velocity: Large Energy Deposition • Low-Energy Anti-Protons: Antimatter Research

  9. Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac Compressed Baryonic Matter HESR Anti-Proton Physics Super Fragment- Separator: Compressed Nuclear Structure and Astrophysics Baryonic Matter: Nucleus-nucleus collisions CR FAIR phase 1 FAIR phase 2 100 m 9

  10. QCD matter physics P=P(E,T, ρ ,I) 10

  11. Neutron star mergers and heavy-ion collisions density temperature M. Hanauske et al., J. Phys.: Conf. Ser. 878 012031 n-star merger EOS Au +Au 1.5A GeV 11

  12. The nuclear matter equation-of-state The nuclear matter equation of state (EOS) describes the relation between density, pressure, temperature, energy, and isospin asymmetry Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5 P = d E/ d V  T=const V = A/ ρ d V/ d ρ = - A/ ρ 2 P = ρ 2 d (E/A)/ d ρ  T=const Neutron matter E/A E A ( ρ,δ) = E A ( ρ,0)+ E sym ( ρ)·δ 2 E sym Symmetric matter with δ= (ρ n –ρ p )/ ρ 12

  13. The EOS of (symmetric) nuclear matter E A ( ρ,δ) = E A ( ρ,0) + E sym ( ρ)·δ 2 + O( δ 4 ) C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1 T=0: E/A = 1/ ρ  U ( ρ )d ρ Effective NN-potential: U (r)=ar+br g  E/A( ρ o ) = -16 MeV  slope d (E/A)( ρ o )/ d ρ = 0  curvature K nm = 9 ρ 2 d 2 (E/A)/ d ρ 2 (nuclear incompressibility) Measurements at GSI SIS18:  elliptic flow of light fragments  subthreshold kaon production K nm = 200 MeV: "soft" EOS K nm = 220  40 MeV: "soft" EOS A. Le Fevre et al., Nucl. Phys. A945 (2016) 112 C. Sturm et al., (KaoS Collaboration) Phys. Rev. Lett. 86 (2001) 39 K nm = 380 MeV: "stiff" EOS Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974

  14. The nuclear symmetry energy E A ( ρ,δ) = E A ( ρ,0)+ E sym ( ρ) · δ 2 Ch. Fuchs and H.H. Wolter, EPJA30 (2006) 5 Empirical value E sym ( ρ 0 ) ≈ 30 MeV slope elliptic flow n/ch E sym (MeV) theoretical value L( ρ 0 ) ≈ 60 MeV B.A. Li and X. Han, Phys. Lett. B 727 (2013) 276 curvature theoretical value K sym = -700 to 470 MeV P. Russotto et al., Phys. Rev. C 94, 034608 (2016)

  15. Mass-density relation of neutron stars for different EOS PSR J1614-2230 M = 1.97  0.04 M sun P. Demorest et al., Nature 467, 1081 (2010) PSR J0348+0432 M = 2.01  0.04 M sun J. Antoniadis et al., Science 340 , 6131 (2013 ) 3 ρ 0 5 ρ 0 8 ρ 0 T. Klaehn et al., Phys. Rev. C74: 035802, 2006

  16. The high-density nuclear matter equation-of-state Symmetry energy E sym ? Neutron matter 3 – 5 ρ 0 E/A Symmetric matter EOS ? E sym Symmetric matter 3.0 3.5 4.0 4.5 5.0 16

  17. Baryon densities in central Au+Au collisions I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007) 10 A GeV 5 A GeV 8 ρ 0 5 ρ 0  2 ρ 0  5 ρ 0 17 courtesy Toru Kojo (CCNU)

  18. CBM physics case and observables The QCD matter equation-of-state at neutron star core densities  collective flow of identified particles ( π ,K,p, Λ , Ξ , Ω ,...) driven by the pressure gradient in the early fireball EOS of symmetric matter extracted from proton flow in Au+Au collisions measured at AGS for beam energies from 2 to 11A GeV. hard EoS soft EoS K + prod. Azimuthal angle distribution: dN/d φ = C (1 + v 1 cos( φ ) + v 2 cos(2 φ ) + ...) P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

  19. CBM physics case and observables The QCD matter equation-of-state at neutron star core densities  particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Direct multi-strange hyperon production: pp  K + p Λ 0 Λ 0 Λ 0   - p pp   - K + K + p pp  K + p Λ 0 (E thr = 3.7 GeV) pp   - K + K + K 0 p (E thr = 7.0 GeV) Λ 0  -   - n pp  K + p Λ 0 pp  Λ 0 Λ 0 pp (E thr = 7.1 GeV) pp   +  - pp (E thr = 9.0 GeV) pp  K + p Λ 0 pp   +  - pp (E thr = 12.7 GeV Λ 0 Λ 0   - p pp  K + p Λ 0 K -  -   - p - Hyperon production via multiple collisions pp  ppK + K - 1. pp  K + Λ 0 p , pp  K + K - pp, 2. p Λ 0  K +  - p, πΛ 0  K +  - π , pp  K + p Λ 0 Λ 0 K -   - p 0 Λ 0 p  K +  - p Λ 0 Λ 0   - p , p 3 . Λ 0  -   - n ,  - K -   - p - pp  K + p Λ 0 Λ 0  -   - n Antihyperons 1. Λ 0 K +   + p 0 , 2.  + K +   + p + .  Hyperon yield  multi-step collisions  density  EOS

  20. CBM physics case and observables The QCD matter equation-of-state at neutron star core densities  particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Ω - production in 4A GeV Au+Au HYPQGSM calculations, K. Gudima, Y. Murin et al. , priv. comm.

  21. CBM physics case and observables The QCD matter equation-of-state at neutron star core densities  particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Hyperon yield in 4A GeV Au+Au: soft EOS (K=240 MeV) / hard EOS (K=350) MeV Ω - Ω + Ξ + Λ Ξ - Λ PHQMD calculations , V. Kireyeu et al., priv. comm.

  22. CBM physics case and observables The QCD matter equation-of-state at neutron star core densities  particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Simulations using the UrQMD event generator for central Au+Au collisions 10A GeV based on realistic detector responses FAIR

  23. CBM physics case and observables The symmetry energy E sym at high density  Elliptic flow neutrons/protons (upgrade option)  Particles with opposite isospin π - / π + E thr I 3 particle production decay GeV Σ +  p π 0 Σ + (uus) pp  Σ + K + n +1 pp  Σ + K 0 p 1.8 Σ +  n π + pn  Σ + K 0 n Au+Au 400A MeV n/p flow Σ -  n π - Σ - (dds) pn  Σ - K + p 1.8 -1 nn  Σ - K + n n/p flow Missing mass method π - / π + π - / π + W.-M. Guo et al., Phys. Lett. B738 (2014) 397

  24. Quark matter in massive neutron stars? M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, arXiv:1308.1657 Phys. Rev. C 89, 015806, 2014 QCD phase diagram

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend