an antigravity experiment for the future flair facility
play

An Antigravity Experiment for the Future FLAIR Facility (Facility - PowerPoint PPT Presentation

An Antigravity Experiment for the Future FLAIR Facility (Facility for Low-Energy Antiproton and Ion Research) HITRAP Wolfgang Quint GSI Darmstadt and Univ. Heidelberg PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014,


  1. An ‘Antigravity’ Experiment for the Future FLAIR Facility (Facility for Low-Energy Antiproton and Ion Research) HITRAP Wolfgang Quint GSI Darmstadt and Univ. Heidelberg PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  2. FLAIR - Facility for Low-Energy Antiproton and Ion Research • NESR FLAIR – Pbars and ions – 30 – 400 MeV • LSR – Magnetic ring – Min. 300 keV (former CRYRING) • USR – Electrostatic ring – Min. 20 keV • HITRAP – Pbars and ions energy range: 400 MeV – 1 meV – Stopped & extracted @ 5 keV PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  3. FLAIR@FAIR - Baseline Technical Report • High-brightness low-energy beams • Electron cooling • ε ~ 1 π mm mrad, ∆ p/p ~ 10 –4 • Storage rings with internal targets • Slow and fast extraction • HITRAP facility for HCI & pbar • New experiments possible • Same facilities can be used for highly charged ions (HCI) PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  4. FLAIR - Facility for Low-Energy Antiproton and Ion Research Courtesy: Wolfgang Quint Courtesy: Horst Stöcker PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  5. Cryring (Stockholm) for LSR (Low-Energy Storage Ring) at FLAIR • Beam delivery for HITRAP, USR, experiments • Fitting energy range, electron cooling • Fast ramping, internal target • CRYRING has been contributed by Sweden as in-kind contribution to FAIR and is now being set up at ESR PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  6. The HITRAP Facility for Heavy Highly Charged Ions and Antiprotons HITRAP will deliver 5 keV antiprotons to low-energy experiments Precision trap Other experimental setups, second floor Double-drift-buncher IH-structure RFQ cooler trap HCI from (N)ESR, To exp. areas antiprotons from LSR ground floor 4 MeV/u → 0.5 MeV/u → 6 keV/u PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  7. FLAIR - Facility for Low-Energy Antiproton and Ion Research HITRAP We need a transfer line from the Collector Ring to the ESR. PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  8. Antiproton Beamline If we will have a transfer line from the Collector Ring to the ESR, then • the ESR can take over a part of the tasks of the NESR, HITRAP • CRYRING is the LSR of FLAIR, • HITRAP can decelerate antiprotons, and • the USR can be attached to CRYRING. = nearly the full FLAIR facility (except for the neighbourhood to rare isotopes) PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  9. FLAIR: Research Topics with Low-Energy Antiprotons EXPERIMENTS WITH ANTIPROTONS CsI crystals CsI crystals EXPERIMENTS WITH ANTIPROTONS AT EXTREMELY LOW ENERGIES AT EXTREMELY LOW ENERGIES charged tracks charged tracks Si strip detectors Si strip detectors • fundamental interactions • fundamental interactions mixing trap mixing trap 511 keV 511 keV - CPT (antihydrogen, HFS, magnetic moment) electrodes electrodes - CPT (antihydrogen, HFS, magnetic moment) photons photons - gravitation of antimatter - gravitation of antimatter ATHENA Nature 419 (2002) 456 • atomic collision studies • atomic collision studies - ionization - ionization - energy loss - energy loss - matter-antimatter collisions - matter-antimatter collisions • antiprotonic atoms • antiprotonic atoms M. Hori et al., PRL 92 (2003) 123401 - formation - formation - strong interaction and surface effects - strong interaction and surface effects A. Trzcinska, J. Jastrzebski et al.PRL 87 (2001) 082501 PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  10. A New Route Towards an Antihydrogen Gravity Experiment Our approach is to first build an off-line mirror experiment with matter, as a testing ground for our methods. New approaches to trapping and cooling of charged particles (MPI-K and GSI/FLAIR) with general methods of trapping and cooling of neutral atoms (Univ. of Texas at Austin) The basic strategy of the mirror system is to trap and cool protons and electrons in a cryogenic Penning trap. The protons will then be launched to form a beam of neutral hydrogen atoms, which will be stopped and cooled. PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  11. A New Route Towards an Antihydrogen Gravity Experiment Our approach is to first build an off-line mirror experiment with matter, as a testing ground for our methods. New approaches to trapping and cooling of charged particles (MPI-K and GSI/FLAIR) with general methods of trapping and cooling of neutral atoms (Univ. of Texas at Austin) The basic strategy of the mirror system is to trap and cool protons and electrons in a cryogenic Penning trap. The protons will then be launched to form a beam of neutral hydrogen atoms, which will be stopped and cooled. PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  12. Tasks to Charged Particle Storage (MPI-K and GSI/FLAIR) • Storage of a large number of 10 8 protons and electrons 1 • Sensitive non-destructive detection ms-s • Fast cooling of the charged particles • Efficient cooling of antiprotons in prep. to low temperatures PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  13. Single Charged Particle Stored in a Penning Trap z U 0 endcap radial confinement axial confinement AXIAL MOTION B � z ion ring e n d c a p MAGNETRON DRIFT � - (MODIFIED) CYCLOTRON MOTION potential B 0 � + magnetic physical electric combined ion motion PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  14. Highly Charged Ion g-Factor Apparatus at Mainz (Coll. MPI-K group of Klaus Blaum and GSI ): Tests of Quantum Electrodynamics in Strong Fields SUPERCONDUCTING MAGNET MICROWAVE INLET WITH ROOM TEMPERATUR BORE PRECISION TRAP CRYOSTAT SINGLE ION IN TRAP `DOUBLE TRAP‘ CRYO ELECTRONICS @ 4 K MAGNETIC BOTTLE SUPERCONDUCTING SOLENOIDS MINI EBIS PENNING TRAP @ 4K TARGET FEP PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  15. Electronic detection of a single trapped ion: Resistive cooling to 4 K and active feedback cooling to < 1 K B complex electronics end cap ν z = 680 kHz compensation feedback G electrode cooling C R L ring electrode U = I R φ compensation electrode 9 cm dE k /dt = P cool = -I 2 R T < 1 K end cap single proton resistive or ion cooling T = 4 K PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  16. High-resolution cyclotron frequency measurement of a single highly charged silicon ion 2 8 Si 1 3 + PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  17. 5+ -ions Resistive Cooling of C Resistive Cooling of Trapped 12 C 5+ Ions to T = 4 K in a Penning Trap - final temperature: T = 4 Kelvin axial energy [arb. units] τ cool = 132 ms Τ = 4 Κ 0 1 2 3 4 5 cooling time [s] PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  18. Determination of the (Anti)Proton g-Factor BASE Collaboration at AD/CERN, Spokesperson: Stefan Ulmer e e ω c = ω = B g B ω L 2 m m = 2 p L p g ω Cyclotron frequency Larmor frequency c r B ω h L e m ( ) ( ) 2 2 2 ω = ω + ω + ω ω ↑ − ω ↓ = ∆ ω ' ' + − c z z z z ω ≈ π ⋅ 2 29 MHz + ω ≈ π ⋅ 2 690 kHz z ω ≈ π ⋅ 2 8 . 5 kHz − analysis trap analysis trap precision trap precision trap PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  19. Evaporative Cooling of Protons Electronic detection signal Cyclotron frequency [MHz] Direct evaporative cooling of antiprotons is not viable, since it would lead to a huge loss in number. PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  20. Sympathetic Evaporative Cooling Direct laser cooling of negative ions is not promising. Evaporative cooling can be conveniently done by tuning of a photo-detachment laser. PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  21. Tasks to Neutral Particle Storage (M. Raizen, Univ. of Texas at Austin) • Deceleration and stopping of a done neutral particle beam soon • Cooling of neutral H atoms in prog. • Detection of stored H atoms planned • Precision experiments PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

  22. Towards Magnetic Trapping Ref.: M. Raizen PHYSIKALISCHES INSTITUT FLAIR-Workshop, Heidelberg, 15 May 2014, Wolfgang Quint UNIVERSITÄT HEIDELBERG

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend