elena cryring or flair elena cryring or flair
play

ELENA, CRYRING, or FLAIR ELENA, CRYRING, or FLAIR D. Fischer, R. - PowerPoint PPT Presentation

The ReMi Experiment at The ReMi Experiment at ELENA, CRYRING, or FLAIR ELENA, CRYRING, or FLAIR D. Fischer, R. Moshammer (Heidelberg), Ulrik Uggerhj, Helge Knudsen (Aarhus), Masaki Hori (Munich), Yasunori Yamazaki, Yasuyuki Matsuda, Naofumi


  1. The ReMi Experiment at The ReMi Experiment at ELENA, CRYRING, or FLAIR ELENA, CRYRING, or FLAIR D. Fischer, R. Moshammer (Heidelberg), Ulrik Uggerhøj, Helge Knudsen (Aarhus), Masaki Hori (Munich), Yasunori Yamazaki, Yasuyuki Matsuda, Naofumi Kuroda (Tokyo), Michael Charlton (Swansea) et al.

  2. The ReMi Experiment at The ReMi Experiment at ELENA, CRYRING, or FLAIR ELENA, CRYRING, or FLAIR (Sub-)femtosecond correlated dynamics probed with antiprotons D. Fischer, R. Moshammer (Heidelberg), Ulrik Uggerhøj, Helge Knudsen (Aarhus), Masaki Hori (Munich), Yasunori Yamazaki, Yasuyuki Matsuda (Tokyo), Naofumi Kuroda (Tokyo), Michael Charlton (Swansea) et al.

  3. Sub-Femtosecond Correlated Dynamics Atom: t ≈ 2 0 as I = 10 16 W/cm 2

  4. Sub-Femtosecond Correlated Dynamics Half-cycle pulses: t ~ 5 fs … 1 as I = 10 16 W/cm 2 Collisions: • vary the interaction strength • vary (and access) ultra-short Atom: interaction times t ≈ 20 as I = 10 16 W/cm 2 • vary the charge sign  Chance for rigorous theory

  5. Femtosecond Correlated Dynamics Half-cycle pulses: t ~ 5 fs … 1 as I = 10 16 W/cm 2 positive ion Collisions: • e - impact ionization threshold • ion impact Atom: t ≈ 2 0 as electron transfer / quasi-molecules I = 10 16 W/cm 2 • p impact a unique and the only tool!

  6. Total cross sections of single ionization of helium in slow antiproton collisions: THEORY in the year 1994 1 . 0 C D W - E I S F a i n s t e i n ( 9 4 ) C T M C S c h u l t z e t a l ( 8 9 ) 0 . 8 ] 2 m c 6 1 - 0 0 . 6 1 [ n o i t c e s 0 . 4 s s o r C 0 . 2 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 fs … 0.3 fs … 0.1 fs … 30 as time E n e r g y [ k e V ]

  7. Total cross sections of single ionization of helium in slow antiproton collisions: THEORY in the year 2008 1.0 2C PWBA: Das et al (97) CDW-EIS: Fainstein (94) CTMC: Schultz (89) TDCC Foster et al (08) MEAOCC-3: Sahoo et al (05) 0.8 MEAOCC-2 Igarashi et al (04) 2 ] IPM-BGM-RESP-2: Keim et al (03) -16 cm LTDSE: Schultz and Krstic (03) TDDFT/OEP-SIC: Tong et al (02) IPM-BGM-RESP-1: Kirchner et al (02) MEAOCC-1: Lee et al (00) 0.6 Cross section [10 MEHC: Bent et al (98) MFIM, 7 cuts: Reading et al (97) IEV: Wehrman et al (96) IPM: wehrman et al (96) 0.4 0.2 0 1 10 100 1000 10000 1 fs … 0.3 fs … 0.1 fs … 30 as time Energy [keV]

  8. Total cross sections of single ionization of helium in slow antiproton collisions: THEORY in the year 2008 Benchmark system for 1.0 ionization in the presence of CERN (08) CERN (94) CERN (90) 2C PWBA: Das et al (97) correlation CDW-EIS: Fainstein (94) 0.8 CTMC: Schultz (89) 2 ] TDCC Foster et al (08) -16 cm MEAOCC-3: Sahoo et al (05) MEAOCC-2 Igarashi et al (04) IPM-BGM-RESP-2: Keim et al (03) LTDSE: Schultz and Krstic (03) 0.6 Cross section [10 TDDFT/OEP-SIC: Tong et al (02) IPM-BGM-RESP-1: Kirchner et al (02) MEAOCC-1: Lee et al (00) MEHC: Bent et al (98) MFIM, 7 cuts: Reading et al (97) 0.4 IEV: Wehrman et al (96) IPM: wehrman et al (96) 0.2 0 Ultimately: 1 10 100 1000 10000 1 fs … 0.3 fs … 0.1 fs … 30 as time Energy [keV] fully differential! Knudsen et al PRL 101 , 043201 (08)

  9. Reaction Microscopes The “Cloud - Chamber” of atomic and molecular physics gas jet electron projectile beam recoil ion recoil ion Fragmentation kinematically complete and in 3D

  10. Total cross sections of single ionization of helium in slow antiproton collisions: THEORY in the year 2008 1.0 CERN (08) CERN (94) CERN (90) 2C PWBA: Das et al (97) CDW-EIS: Fainstein (94) 0.8 CTMC: Schultz (89) 2 ] TDCC Foster et al (08) -16 cm MEAOCC-3: Sahoo et al (05) MEAOCC-2 Igarashi et al (04) IPM-BGM-RESP-2: Keim et al (03) LTDSE: Schultz and Krstic (03) 0.6 Cross section [10 TDDFT/OEP-SIC: Tong et al (02) At high energies: perturbative limit IPM-BGM-RESP-1: Kirchner et al (02) MEAOCC-1: Lee et al (00) MEHC: Bent et al (98) - all theories converge MFIM, 7 cuts: Reading et al (97) 0.4 IEV: Wehrman et al (96) IPM: wehrman et al (96) 0.2 0 1 10 100 1000 10000 1 fs … 0.3 fs … 0.1 fs … 30 as time Energy [keV] Knudsen et al PRL 101 , 043201 (08)

  11. Theory: 1 st Born incoming (plane) wave |𝜒 P = 𝑓 −𝑗𝑞 0 𝑆 |𝜔 atom |𝜔 cont Cross section (Born series): 2 d𝑟 + ℴ 𝜃 3 d𝜏 = 8𝜌 𝜃2 𝑔 𝜔 atom 𝑗 𝑓 −𝑗𝑟∙𝑠 𝑟3 𝜔 cont 𝑎 P Perturbation parameter: 𝜃 = 𝑤 P

  12. Fully differential cross sections for ions Fully differential cross section d 3 𝜏 1.2 GeV C 6+ + He η = 0.1 d𝐹 d𝑟 dΩ e 𝑟 𝑟 = 𝑤 proj 0.75 a.u. CDW-EIS, D. Madison et al. M. Schulz, …, DF et al. Cross section (Born series): Nature 422, 48 (2003) 2 d𝑟 + ℴ 𝜃 3 d𝜏 = 8𝜌 𝜃2 𝑔 𝜔 atom 𝑗 𝑓 −𝑗𝑟∙𝑠 𝑟3 𝜔 cont 𝑎 P Perturbation parameter: 𝜃 = 𝑤 P

  13. Fully differential cross sections for ions 1.2 GeV C 6+ + He η = 0.1 𝑟 = 0.75 a.u. Theory: M. Schulz, …, D. Fischer et al. CP, M. McGovern et al. PRA Nature 422, 48 (2003) 81, 042704 (2010) TDCC, J. Colgan et al., JPB 44, 175205 (2011)

  14. What goes wrong? 2𝜌 𝜇 = 𝑁 𝑄 𝑤 𝑄 incoming (plane) wave scattered wave

  15. Projectile mass and coherence many source points many incoherent frequencies wave

  16. Projectile mass and coherence the coherence length 𝜀 ⊥ is the maximum slit distance still resulting in an interference pattern 𝜀 ⊥ ∆𝑞 ⊥ = 𝜌 many source points many incoherent frequencies wave 𝜀 ⊥ ≈ 10 −3 a.u. in the 1.2 GeV C 6+ experiment Effects were observed for ion-molecule collisions (K.N. Egodapitiya, et al., PRL 106, 153202 (2011))

  17. Projectile coherence electron cooling: e - beam ion beam increase of 𝜀 ⊥ = 𝜌 ∆𝑞 ⊥ ion storage ring TSR

  18. Projectile coherence 90° 120° 60° 30° 150° 180° 0° 210° 330° 240° 300° 270° 1.2 GeV C 6+ ( 𝜀 ⊥ ≈ 10 −3 a.u.) CDW-EIS for 1.2 GeV C 6+ 3 MeV protons ( 𝜀 ⊥ ≈ 3 a.u.) CDW-EIS for 3 MeV protons X. Wang, ..., D. Fischer, JPB (FTC) 45, 211001 (2013)

  19. Projectile coherence Select small impact parameters 𝑐 : transfer ionization ∆𝑐 90° 120° 60° incoherent 150° 30° wave 16 MeV O 7+ ( 𝜀 ⊥ ≈ 0.35 a.u.) 180° 0° incoherent ( Δ𝑐 > 𝜀 ⊥ , single ionization) Coherent ( Δ𝑐 < 𝜀 ⊥ , transfer ionization) 210° 330° 240° 300° K. Schneider, ..., DF, PRL 110, 113201 (2013) 270°

  20. Projectile coherence  Experimental evidence of projectile coherence effects on the cross section  that implies that scattering cross sections depend on the way, how the projectile is prepared? … but further research is required to  include the coherence length in a QM model  Measure cross section as a function of coherence length (in one experiment)

  21. But what to expect for antiprotons? • Are there differences between p and pbar at high energies? • What is the correlated dynamics at low energies? Theories, pbar-He, McGovern et al. (09): • First Born Appr. (grid) • Coupled Pseudostates (surface) 3keV 60 keV 500 keV

  22. ELENA machine section 1 1. New setup with new design Space for the REMI 1569 mm 3. No very low energies Energy 100 keV Vacuum 3E-12 Torr beam emittance εxy 3 mm mrad beam diameter typ. 3mm pulse duration >50 ns number of injected pbars ca 1E7 2. No fully differential cross sections intensity (directly after decceleration) 1E12 pbars/s From http://indico.cern.ch/event/280768/session/2/contribution/8/material/slides/1.pdf F. Butin / ELENA collaboration

  23. The in-ring MOTReMi in CRYRING Future perspective: A ReMi in the USR@FLAIR  Talk by C. Welsch CRYRING:  Protons, highly charged ions, antiprotons …  Energies ≥ 300 keV

  24. Collaboration MPIK: Robert Moshammer Daniel Fischer Alexander Voitkiv Johannes Goullon Bennaceur Najjari Renate Hubele Joachim Ullrich (now PTB) Hannes Lindenblatt … Katharina Schneider Michael Schuricke Shaofeng Zhang Xincheng Wang Aarhus University: MPQ, Munich: Helge Knudsen Masaki Hori MST, Rolla, Missouri: Ulrik Uggerhoej Michael Schulz

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend