quantum loop algebras and functional relations oscillator
play

Quantum loop algebras and functional relations: Oscillator vs. - PowerPoint PPT Presentation

Quantum loop algebras and functional relations: Oscillator vs. prefundamental representations Khazret S. Nirov U NI W UPPERTAL & INR RAS, M OSCOW RAQIS16, Geneva, August 23, 2016 Introduction 1 Quantum groups 2 Universal integrability


  1. Quantum loop algebras and functional relations: Oscillator vs. prefundamental representations Khazret S. Nirov U NI W UPPERTAL & INR RAS, M OSCOW RAQIS’16, Geneva, August 23, 2016

  2. Introduction 1 Quantum groups 2 Universal integrability objects 3 U q ( gl l + 1 ) - and U q ( L ( sl l + 1 )) -modules 4 U q ( b + ) -submodules 5 Universal functional relations 6 Highest ℓ -weight modules 7 Appendix 8

  3. Hidden Grassmann structure Boos, Jimbo, Miwa, Smirnov, Takeyama, 2006 – 2016 Quantum group approach to functional relations Bazhanov, Lukyanov, Zamolodchikov, 1994 – 1999 Bazhanov, Hibberd, Khoroshkin, 2001 Group-theoretic / Algebraic approach revisited Boos, G¨ ohmann, Kl¨ umper, NX, Razumov, 2010 – 2016 Prefundamental representations and functional relations Hernandez, Jimbo, 2011 Frenkel, Hernandez, 2014

  4. Quantum groups: V. Drinfeld & M. Jimbo (1985 - 1986) A is a Hopf algebra with respect to ∆ , S , ε A is a Hopf algebra with ∆ op = Π ◦ ∆ Π ( a ⊗ b ) = b ⊗ a , a , b ∈ A The universal R -matrix ∆ op ( a ) = R ∆ ( a ) R − 1 , R ∈ B + ⊗ B − ⊂ A ⊗ A ( ∆ ⊗ id )( R ) = R 13 R 23 , ( id ⊗ ∆ )( R ) = R 13 R 12 The master equation R 12 R 13 R 23 = R 23 R 13 R 12 B + ⊗ A ⊗ B − ⊂ A ⊗ A ⊗ A defined in

  5. Universal integrability objects Yang-Baxter equation with ∆ ( t ) = t ⊗ t ( R 13 t 1 )( R 23 t 2 ) = ( R 12 ) − 1 ( R 23 t 2 )( R 13 t 1 ) R 12 ( ∗ ) Monodromy operator: ϕ : A → End ( V ) M ϕ ( ζ ) = ( ϕ ζ ⊗ id )( R ) ∈ End ( V ) ⊗ A Transfer operator T ϕ ( ζ ) = ( tr V ⊗ id )( M ϕ ( ζ )( ϕ ζ ( t ) ⊗ 1 )) = (( tr V ◦ ϕ ζ ) ⊗ id )( R ( t ⊗ 1 )) L -operator: ρ : B + → End ( W ) L ρ ( ζ ) = ( ρ ζ ⊗ id )( R ) ∈ End ( W ) ⊗ A Q -operator Q ρ ( ζ ) = ( tr W ⊗ id )( L ρ ( ζ )( ρ ζ ( t ) ⊗ 1 )) = (( tr W ◦ ρ ζ ) ⊗ id )( R ( t ⊗ 1 ))

  6. First universal functional relations Directly from the Yang-Baxter equation ( tr ◦ ϕ 1 ζ 1 ) ⊗ ( tr ◦ ϕ 2 ζ 2 )( ∗ ) ⇒ T ϕ 1 ( ζ 1 ) T ϕ 2 ( ζ 2 ) = T ϕ 2 ( ζ 2 ) T ϕ 1 ( ζ 1 ) ( tr ◦ ρ ζ 1 ) ⊗ ( tr ◦ ϕ ζ 2 )( ∗ ) ⇒ Q ρ ( ζ 1 ) T ϕ ( ζ 2 ) = T ϕ ( ζ 2 ) Q ρ ( ζ 1 ) The rest is more tricky: � R 13 t 1 R 23 t 2 � Q ρ 1 ( ζ 1 ) Q ρ 2 ( ζ 2 ) = (( tr W 1 ⊗ W 2 ◦ ( ρ 1 ζ 1 ⊗ ρ 2 ζ 2 )) ⊗ id ) R 13 t 1 R 23 t 2 = [( ∆ ⊗ id )( R )] [( ∆ ⊗ id )( t ⊗ 1 )] = ( ∆ ⊗ id )( R ( t ⊗ 1 )) Q ρ 1 ( ζ 1 ) Q ρ 2 ( ζ 2 ) = (( tr W 1 ⊗ W 2 ◦ ( ρ 1 ζ 1 ⊗ ∆ ρ 2 ζ 2 )) ⊗ id )( R ( t ⊗ 1 )) Cipher key T λ ( ζ ) = Q 1 ( q 2 ( λ + ρ ) 1 / s ζ ) Q 2 ( q 2 ( λ + ρ ) 2 / s ζ ) Q 3 ( q 2 ( λ + ρ ) 3 / s ζ ) C � C � T λ ( ζ ) = Q 1 ( q − 2 ( λ + ρ ) 1 / s ζ ) Q 2 ( q − 2 ( λ + ρ ) 2 / s ζ ) Q 3 ( q − 2 ( λ + ρ ) 3 / s ζ )

  7. Quantum group U q ( gl l + 1 ) Roots : normal ordering of △ + [ l ( l + 1 ) /2 positive roots ] α 1 , α 1 + α 2 , α 2 , α 1 + α 2 + α 3 , α 2 + α 3 , α 3 , . . . . . . α 1 + α 2 + . . . + α i , α 2 + . . . + α i , . . . , α i , . . . . . . α 1 + α 2 + . . . + α l , α 2 + . . . + α l , . . . , α l Equivalent to the total co-lexicographic order ≤ on the set N × N Generators and Cartan subalgebra of gl l + 1 i = 1, . . . , l E i , F i , l + 1 � K i , i = 1, . . . , l + 1, k l + 1 = C K i i = 1 Quantum group U q ( gl l + 1 ) generated by q X , i = 1, . . . , l , X ∈ k l + 1 E i , F i , Representations of U q ( gl l + 1 ) π λ with the highest weight vector v λ Infinite dimensional representation � E i v λ = 0, q X v λ = q � λ , X � v λ , λ ∈ k ∗ i = 1, . . . , l , X ∈ k l + 1 , l + 1 Finite dimensional representation π λ arises as a quotient sub-representation π λ when λ i − λ i + 1 ∈ Z + for all i = 1, . . . , l from �

  8. Higher root vectors and q -commutation relations Root vectors (M. Jimbo, 1986) E i , i + 1 = E i , i = 1, . . . , l E ij = E i , j − 1 E j − 1, j − q E j − 1, j E i , j − 1 , j − i > 1 and F i , i + 1 = F i , i = 1, . . . , l F ij = F j − 1, j F i , j − 1 − q − 1 F i , j − 1 F j − 1, j , j − i > 1 Simplest commutations q ν K i E mn q − ν K i = q ν ∑ n − 1 q ν K i F mn q − ν K i = q − ν ∑ n − 1 j = m c ij E mn , j = m c ij F mn q ν H i = q ν ( K i − K i + 1 ) , i = 1, . . . , l q ν H i E mn q − ν H i = q ν ∑ n − 1 q ν H i F mn q − ν H i = q − ν ∑ n − 1 j = m a ij E mn , j = m a ij F mn where � c ij � : ( l + 1 ) × l matrix with c ii = 1, c i + 1, i = − 1, c i , i + 1 = 0, i = 1, . . . , l , c ij = 0 for | j − i | ≥ 2 α j ( K i ) = c ij , α j ( K i ) − α j ( K i + 1 ) = α j ( H i ) = a ij , i , j = 1, . . . , l Six different branches for { ( ij ) , ( mn ) } ∈ N 2 × N 2 (H. Yamane, 1989) C I : i = m < j < n , C II : m < i < j < n , C III : i < m < j = n C V : i < j = m < n , C IV : i < m < j < n , C VI : i < j < m < n

  9. Further commutation relations E ij with E mn E ij E mn = q − 1 E mn E ij , { ( ij ) , ( mn ) } ∈ C I ∪ C III E ij E mn = E mn E ij , { ( ij ) , ( mn ) } ∈ C II ∪ C VI E ij E mn − q E mn E ij = E in , { ( ij ) , ( mn ) } ∈ C V E ij E mn − E mn E ij = − κ q E in E mj , { ( ij ) , ( mn ) } ∈ C IV F ij with F mn F ij F mn = q − 1 F mn F ij , { ( ij ) , ( mn ) } ∈ C I ∪ C III F ij F mn = F mn F ij , { ( ij ) , ( mn ) } ∈ C II ∪ C VI F ij F mn − q F mn F ij = − q F in , { ( ij ) , ( mn ) } ∈ C V F ij F mn − F mn F ij = − κ q F in F mj , { ( ij ) , ( mn ) } ∈ C IV

  10. Further commutation relations E ij with F mn � � j − 1 j − 1 [ E ij , F ij ] = κ − 1 q ∑ k = i H k − q − ∑ k = i H k q j − 1 [ E ij , F mn ] = − q − 1 F jn q − ∑ k = i H k , { ( ij ) , ( mn ) } ∈ C I [ E ij , F mn ] = q E im q − ∑ n − 1 k = m H k = q − ∑ n − 1 k = m H k E im , { ( ij ) , ( mn ) } ∈ C III [ E ij , F mn ] = 0, { ( ij ) , ( mn ) } ∈ C II ∪ C V ∪ C VI j − 1 [ E ij , F mn ] = κ q E im F jn q − ∑ k = m H k , { ( ij ) , ( mn ) } ∈ C IV In the last relation [ E im , F jn ] = 0 and j − 1 j − 1 j − 1 j − 1 q − ∑ k = m H k F jn = q − 1 F jn q − ∑ q − ∑ k = m H k E im = q E im q − ∑ k = m H k , k = m H k

  11. Further commutation relations E mn with F ij j − 1 j − 1 k = i H k E jn = − E jn q ∑ [ E mn , F ij ] = − q q ∑ k = i H k , { ( ij ) , ( mn ) } ∈ C I [ E mn , F ij ] = q − 1 q ∑ n − 1 k = m H k F im = F im q ∑ n − 1 k = m H k , { ( ij ) , ( mn ) } ∈ C III [ E mn , F ij ] = 0, { ( ij ) , ( mn ) } ∈ C II ∪ C V ∪ C VI j − 1 [ E mn , F ij ] = − κ q F im E jn q ∑ k = m H k , { ( ij ) , ( mn ) } ∈ C IV In the last relation [ E jn , F im ] = 0 and j − 1 j − 1 j − 1 j − 1 k = m H k E jn = q − 1 E jn q ∑ k = m H k F im = q F im q ∑ q ∑ k = m H k , q ∑ k = m H k The elements q ν K i , i = 1, . . . , l + 1, E ij , F ij , i = 1, . . . , l , j = 1, . . . , l + 1, i < j generate a P. B. W. basis of U q ( gl l + 1 ) as { F i 1 j 1 . . . F i a j a q ν 1 K 1 . . . q ν c K c E m 1 n 1 . . . E m b n b | a , b , c ≥ 0 } where ( i 1 j 1 ) ≤ . . . ≤ ( i a j a ) and ( m 1 n 1 ) ≤ . . . ≤ ( m a n a )

  12. U q ( gl l + 1 ) -module � V λ Basis E i v λ = 0, q X v λ = q λ ( X ) v λ , λ ∈ k ∗ i = 1, . . . , l , X ∈ k l + 1 , l + 1 � � V λ ∼ 23 · · · F m 1, l + 1 1, l + 1 · · · F m l , l + 1 q ν K i v m , F i v m , E i v m | v m = F m 12 12 F m 13 13 F m 23 � l , l + 1 v 0 � � ∈ Z ⊗ ( l + 1 ) l /2 m = m 12 , m 13 , m 23 , . . . , m 1, l + 1 , . . . , m l , l + 1 + Acting by q ν K i and q ν H i on v m q ν K i v m = q ν ( λ i + ∑ i − 1 k = 1 m ki − ∑ l + 1 k = i + 1 m ik ) v m , i = 1, . . . , l + 1 q ν H i v m = q ν [ λ i − λ i + 1 + ∑ i − 1 k = 1 ( m ki − m k , i + 1 ) − 2 m i , i + 1 − ∑ l + 1 k = i + 2 ( m ik − m i + 1, k )] v m , i = 1, . . . , l Acting by F k , k + 1 on v m F k , k + 1 v m = q − ∑ k − 1 i = 1 ( m ik − m i , k + 1 ) v m + ǫ k , k + 1 k − 1 j − 1 i = 1 ( m ik − m i , k + 1 ) [ m jk ] q v m − ǫ jk + ǫ j , k + 1 , q − ∑ ∑ + k = 1, . . . , l j = 1 Acting by F 1, l + 1 on v m F 1, l + 1 v m = q ∑ l i = 2 m 1 i v m + ǫ 1, l + 1

  13. U q ( gl l + 1 ) -module � V λ Basis E i v λ = 0, q X v λ = q λ ( X ) v λ , λ ∈ k ∗ i = 1, . . . , l , X ∈ k l + 1 , l + 1 � � V λ ∼ 23 · · · F m 1, l + 1 1, l + 1 · · · F m l , l + 1 � q ν K i v m , F i v m , E i v m | v m = F m 12 12 F m 13 13 F m 23 l , l + 1 v 0 � ∈ Z ⊗ ( l + 1 ) l /2 � m = m 12 , m 13 , m 23 , . . . , m 1, l + 1 , . . . , m l , l + 1 + Acting by E k , k + 1 on v m E k , k + 1 v m = q λ k − λ k + 1 − 2 m k , k + 1 − ∑ l + 1 s = k + 2 ( m ks − m k + 1, s ) k − 1 q ∑ k − 1 i = j + 1 ( m ik − m i , k + 1 ) [ m j , k + 1 ] q v m + ǫ jk − ǫ j , k + 1 ∑ × j = 1 l + 1 + [ λ k − λ k + 1 − ∑ ( m ks − m k + 1, s ) − m k , k + 1 + 1 ] q [ m k , k + 1 ] q v m − ǫ k , k + 1 s = k + 2 l + 1 q − λ k + λ k + 1 − 2 + ∑ l + 1 i = j ( m ki − m k + 1, i ) [ m kj ] q v m − ǫ kj + ǫ k + 1, j , ∑ − k = 1, . . . , l j = k + 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend