fabrication and performance of
play

Fabrication and performance of asymmetric tubular H 2 membranes - PowerPoint PPT Presentation

1 Fabrication and performance of asymmetric tubular H 2 membranes based on LWM-LSC composites Zuoan Li, Marie-Laure Fontaine, Jonathan M. Polfus, Christelle Denonville, Wen Xing, Partow P. Henriksen, Rune Bredesen SINTEF Materials and


  1. 1 Fabrication and performance of asymmetric tubular H 2 membranes based on LWM-LSC composites Zuoan Li, Marie-Laure Fontaine, Jonathan M. Polfus, Christelle Denonville, Wen Xing, Partow P. Henriksen, Rune Bredesen SINTEF Materials and Chemistry, Sustainable Energy Technology, Oslo, Norway This publication has been produced with support from the BIGCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME) . The authors acknowledge the following partners for their contributions: Gassco, Shell, Statoil, TOTAL, ENGIE, and the Research Council of Norway (193816/S60).

  2. 2 Outline  Hydrogen permeation in asymmetric membranes  Fabrication of LWM-LSC tubular membranes  Hydrogen flux of LWM-LSC tubes  Numerical simulation of gas transport  Stability of membranes  Summary

  3. 3 Dense ceramic H 2 membranes ► Power production  Pre-combustion CCS ► Chemicals production  H 2 purification  Catalytic membrane reactors • Hydrogenation • Dehydrogenation Main challenges 1.Fabrication and cost • Novel thin film supported cercer 2.Low flux membranes 3.Membrane stability • Study of transport mechanisms

  4. 4 Hydrogen permeation Dry sweep + Wet feed Porous Dense Inlet Inlet support membrane H 2 + He + H 2 O Ar I H 2 Sweep Feed H + e - II H III H 2 2 Outlet Outlet Depleted H 2 + He + H 2 O H 2 + Ar

  5. 5 Hydrogen permeation Wet sweep + Wet feed Inlet Inlet H 2 + He + H 2 O Ar + H 2 O I H III H O 2 2 II H O 2 = II Feed Sweep O H + 2 + e - I II H H 2 2 III + H 2 I O 2 O 2- I H O 2 Outlet Outlet Depleted H 2 + He + H 2 O H 2 + Ar + H 2 O

  6. 6 Cercer membrane materials ► La 27 W 3.5 Mo 1.5 O 55- d (LWM)  High proton conductivity  Chemical stability ► La 0.87 Sr 0.13 O 3- d (LSC)  High p-type conductivity LWM (70%)-LSC (30%)  High oxide ion conductivity 1) J.M. Polfus, et al., J. Mem. Sci. 479 (2015) 39. LWM 2) A. Magraso, R. Haugsrud, J. Mater. Chem. 2 (2014) 12630. 3) Y. Larring, et al., Membranes 2 (2012) 665.

  7. 7 Fabrication of asymmetric membranes Powder conditioning, suspension and dough preparation Extrusion and drying of LWM tubes in clean room class 7 Cutting and bisque firing of LWM tubes at 1300 o C: 20-30 cm pieces; hang-firing Dip-coating of bisque fired tubes in clean room class 7 : LWM-LSC suspension Sintering of membranes at 1500 o C: Hang-firing, in air

  8. Sintered porous supports and membranes 8 Leak test at RT of asymmetric Permeability of LWM supports membranes 3.0E-14 2 min) LWM supports 0.005 2.5E-14 Gas leakage (mL / cm 2 ) Permeability (m 5E-4 2.0E-14 5E-5 1.5E-14 Helium 5E-6 Oxygen 1.0E-14 5E-7 935 940 945 950 955 960 965 970 0.0 0.5 1.0 1.5 2.0 2.5 3.0 P_high (mbar)  p (bar)

  9. Testing protocols 9 Hydrogen flux testing setup Testing conditions  Sealing: glass-ceramic Retentate ZrO 2 cap  1000-1100 ° C  Tube outer surface:  No coating/Pt coated LWM/LSC membrane  Feed: Wet H 2 Feed Wet H 2  Sweep: Dry/wet Ar ZrO 2 support  2.5% H 2 O GC  Temperature: 1100-750 ° C Sweep Ar or Wet Ar

  10. 10 Hydrogen flux T (°C) 1100 1000 900 800 700 Wet sweep (Pt coated tube) Dry sweep (Pt coated tube) Wet sweep (uncoated tube) Dry sweep (uncoated tube) 2 ) J (H 2 ) (mL/min cm 0.01 Feed: 25 mL/min H 2 +25 mL/min He (wet) Sweep: 25 mL/min Ar 1E-3 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 -1 ) 1000/T (K Higher flux when using wet sweep and Pt coating

  11. 11 LWM (70%) - LSC (30%) LWM (70%) - LSC (30%) Hydrogen permeability LWM °C 80 microns versus 1 mm thick 1100 1000 900 800 700 600 membranes Dry - Pt coated tube - this work Dry - Pt coated disc - Polfus et al. Permeability (H 2 ) (mL/min/cm) Wet - Pt coated tube - this work Wet - Pt coated disc - Polfus et al. • Dry sweep: 1E-3 comparable between tubular and disc membranes • Wet sweep: 1E-4 much higher flux for disc than thinner tubular membrane !! Feed: 25 mL/min H 2 + 25 mL/min He (wet) Sweep: 25 mL/min Ar 1E-5 0.7 0.8 0.9 1.0 1.1 Why water splitting is so different -1 ) 1000/T (K between disc and tube ?

  12. Exchange feed and sweep sides 12 °C 900 880 860 840 820 800 0.03 Wet outer sweep Wet inner sweep 0.025 Dry outer sweep Dry inner sweep Sweep Feed 0.02 2 ) J (H 2 ) (mL/min/cm 0.015 0.01 Feed Sweep Feed: 25 mL/min H 2 +25 mL/min He (wet) Sweep: 25 mL/min Ar 0.84 0.86 0.88 0.90 0.92 0.94 -1 ) 1000/T (K Porous support is not limiting!

  13. Numerical simulations of gas transport 13 LWM/LSC membrane layer RT I  pO    2 H O H 2 O splitting J t d(lnpO ) 2   H 2 2 2 II O e 8 F L 2 pO 2 RT II pH     H 2 permeation Perm 2 J t d(lnpH )   H 2 2 I H e 2 4 F L pH 2 LWM support O 2 , H 2 , H 2 O, Ar        B X J X J X  J        g l k k l k k X p    k e e e X D D D  l k Porous T kl k ,Kn k ,Kn Media   r  4 8 RT g e  p g D D e D    k ,Kn kl kl 3 W k Finite volume, Matlab & Cantera Implementation Solve steady state flux!

  14. Calculated pH 2 gradient under WF+DS 14 Feed T = 900 °C Dry sweep pH 2 0.1 LWM-LSC pH 2 (atm) 50  m LWM support 0.01 Sweep 0.0 0.2 0.4 0.6 0.8 1.0 1.2 r (mm)

  15. 15 Numerical simulations under WF+WS Oxygen surface kinetics at the interface!!! Feed T = 900 °C Wet sweep Sweep 1E-16 pH 2 pH 2 O pH 2 & pH 2 O (atm) pO 2 (atm) 1E-17 0.1 1E-18 Interface Sweep pO 2 T = 900 °C Feed 1E-19 Wet sweep 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 r (mm) r (mm)

  16. 16 40  m

  17. 17 Stability of tubular LMW/LSC membrane T (°C) 1000 950 900 850 800 750 Feed side: 25 mL/min H 2 +25 mL/min He (wet) 0.020 Sweep side: 25 mL/min Ar (wet) 2 ) J (H 2 ) (mL/min cm 0.015 0.010 Cooling from 1000 to 850 °C 0.005 Heating from 850 to 1000 °C Heating from 850 to 950 °C (1 week later) Cooling from 950 to 750 °C (1.5 week later) 0.000 0.80 0.85 0.90 0.95 1.00 -1 ) 1000/T (K

  18. 18 Stability of Pt coated LMW/LSC tube T (°C) 1100 1000 900 800 700 1.0E-2 Feed: 25 mL/min H 2 +25 mL/min He (Wet) Feed: 25 mL/min H 2 + 25 mL/min He (wet) Sweep: 25 mL/min Ar Sweep: 25 mL/min Ar (wet) T = 750 °C 2 ) 2 ) J (H 2 ) (mL/min cm J (H 2 ) (mL/min/cm 0.01 5.0E-3 Wet sweep (cooling:1100-700°C, 1st) Wet sweep (heating:700-1000°C, 2nd) Dry sweep (cooling:1000-700°C, 3rd) Dry sweep (heating:700-1000°C, 4th) Wet sweep (cooling:1000-950°C, 5th - 10 days later) Wet sweep (cooling:900-850°C, 6th - 18 days later) Dry sweep (cooling:850-800°C, 7th - 20 days later) Wet sweep (cooling:800-750°C, 8th - 26 days later) 1E-3 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 0 100 200 300 400 -1 ) 1000/T (K Time (h) One month Anthoer 17 days

  19. 19 Summary ► Fabrication of tubular LWM/LSC cercer membrane on LWM support with scaleable process was achieved ► Interface between the membrane and the support is critical, especially for water splitting or oxygen incorporation. ► Membranes (Pt coated and uncoated) are stable.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend